Skip to content

Image processing median filter #125

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 78 additions & 0 deletions examples/median-filter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
import numpy as np
from scipy.misc import imread, imsave
import pycuda.autoinit
import pycuda.driver as drv
from pycuda.compiler import SourceModule

# Maximum thread size for GPU is dependent on GPU, but normally 512.
# Threads per block should be a multiple of 32.
# Block and Grid Size is dependent on the image.
# This example uses a 256x256 pixel image. A 2D block (16x16) and a 1D grid (256,1) is used

#Read in image
img = imread('noisyImage.jpg', flatten=True).astype(np.float32)

mod = SourceModule('''
__host__ __device__ void sort(int *a, int *b, int *c) {
int swap;
if(*a > *b) {
swap = *a;
*a = *b;
*b = swap;
}
if(*a > *c) {
swap = *a;
*a = *c;
*c = swap;
}
if(*b > *c) {
swap = *b;
*b = *c;
*c = swap;
}
}
__global__ void medianFilter(float *result, float *img, int w, int h) {
//2D Blocks, 1D Grid. Finding respective index
int i = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
// Keeping the edge pixels the same
if (i < w || i > w * (h-1)-1 || i % (w-1) == 0 ) {
result[i] = img[i];
}
else {
int pixel00, pixel01, pixel02, pixel10, pixel11, pixel12, pixel20, pixel21, pixel22;
pixel00 = img[i - 1 - w];
pixel01 = img[i- w];
pixel02 = img[i + 1 - w];
pixel10 = img[i - 1];
pixel11 = img[i];
pixel12 = img[i + 1];
pixel20 = img[i - 1 + w];
pixel21 = img[i + w];
pixel22 = img[i + 1 + w];
//sort the rows
sort( &(pixel00), &(pixel01), &(pixel02) );
sort( &(pixel10), &(pixel11), &(pixel12) );
sort( &(pixel20), &(pixel21), &(pixel22) );
//sort the columns
sort( &(pixel00), &(pixel10), &(pixel20) );
sort( &(pixel01), &(pixel11), &(pixel21) );
sort( &(pixel02), &(pixel12), &(pixel22) );
//sort the diagonal
sort( &(pixel00), &(pixel11), &(pixel22) );
// median is the the middle value of the diagonal
result[i] = pixel11;
}
}''')

medianFilter = mod.get_function("medianFilter")

#This will need tweaking based on your image
blockWidth = np.int32(img.shape[1]/16)
blockHeight = np.int32(img.shape[0]/16)
gridSize = np.int32((img.shape[0] * img.shape[1])/(blockWidth * blockHeight))

#Empty array for computation output
result = np.zeros_like(img)
#Kernel execution
medianFilter(drv.Out(result), drv.In(img),np.int32(img.shape[1]),np.int32(img.shape[0]), block=(blockWidth,blockHeight,1), grid=(gridSize,1))
imsave('medianFilter-CUDA.jpg',result)