-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathfrontend.py
238 lines (197 loc) · 7.5 KB
/
frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import time
import streamlit as st
# Set page configuration
st.set_page_config(page_title="Flux.1 Personalization Service", layout="wide")
# Custom CSS to improve the look of the app
st.markdown(
"""
<style>
.stButton>button {
width: 100%;
}
.stProgress>div>div>div {
background-color: #1E90FF;
}
.image-container {
display: flex;
justify-content: space-between;
margin-bottom: 20px;
}
.image-container img {
width: 32%;
border-radius: 10px;
}
.image-caption {
text-align: center;
font-style: italic;
font-size: 0.8em;
margin-top: 5px;
}
</style>
""",
unsafe_allow_html=True,
)
# Dummy data
paris_prompts = [
"A futuristic Eiffel Tower in a cyberpunk Paris",
"Parisian café on Mars with alien croissants",
"Louvre pyramid as a holographic art gallery",
"Versailles gardens with bioluminescent plants",
"Flying cars racing down Champs-Élysées",
]
training_modes = ["Cyberpunk", "Cosmic", "Biopunk", "Steampunk", "Solarpunk"]
# Initialize session state
if "trained_models" not in st.session_state:
st.session_state.trained_models = []
if "logged_in" not in st.session_state:
st.session_state.logged_in = False
if "username" not in st.session_state:
st.session_state.username = ""
# Dummy user database
users = {"demo": "password", "user": "password"}
# Function to simulate image generation
def generate_image(prompt):
time.sleep(2) # Simulate processing time
image = "https://i.postimg.cc/PqgR9mc1/56fd4a9a-2bce-422b-a90b-52e33bd92cf3.jpg"
return image
# Function to display inspiration images
def display_inspiration_images():
st.markdown("### Inspiration")
images = [
("https://i.redd.it/yf8ws9mv8e621.jpg", "Cyberpunk Paris"),
(
"https://assets.bonappetit.com/photos/605218873b0236be8081d87e/16:9/w_1920,c_limit/Mars_2112_interior-banqutte_daroff-design.jpg",
"Martian Café",
),
(
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRFA2EBw_Sj9qJrCaub1I29UtTQ8WFvLfiqgA&s",
"Futuristic Versailles",
),
]
# Create three columns
col1, col2, col3 = st.columns(3)
# Display each image in its respective column
with col1:
st.image(images[0][0], caption=images[0][1], use_column_width=True)
with col2:
st.image(images[1][0], caption=images[1][1], use_column_width=True)
with col3:
st.image(images[2][0], caption=images[2][1], use_column_width=True)
# Add some spacing
st.write("")
# Authentication functions
def login():
st.subheader("Login")
username = st.text_input("Username", value="demo")
password = st.text_input("Password", value="password", type="password")
if st.button("Login"):
if username in users and users[username] == password:
st.session_state.logged_in = True
st.session_state.username = username
st.success(f"Logged in as {username}")
else:
st.error("Invalid username or password")
def signup():
st.subheader("Sign Up")
new_username = st.text_input("Choose a username")
new_password = st.text_input("Choose a password", type="password")
if st.button("Sign Up"):
if new_username and new_password:
users[new_username] = new_password
st.success("Account created successfully! Please log in.")
else:
st.error("Please provide both username and password")
# Training mode
def training_mode():
st.header("Training Thousands of Personalized Flux.1 Models")
display_inspiration_images()
# Step 1: Upload images
st.subheader("Step 1: Upload Training Images")
uploaded_files = st.file_uploader(
"Choose images for training", accept_multiple_files=True
)
if uploaded_files:
st.success(f"{len(uploaded_files)} images uploaded successfully!")
# Step 2: Train model
st.subheader("Step 2: Train Your Personalized Model")
model_name = st.text_input("Enter a name for your model")
training_mode = st.selectbox("Select a training mode", training_modes)
cloud_provider = st.selectbox(
"Select cloud provider for training", ["AWS", "GCP", "Azure"]
)
if st.button("Start Training") and model_name:
with st.spinner(
f"Training your personalized {training_mode} model..."
):
# Simulate training process
progress_bar = st.progress(0)
for i in range(100):
time.sleep(0.05)
progress_bar.progress(i + 1)
st.success(
f"Training completed successfully! Model '{model_name}' ({training_mode}) is now available."
)
st.session_state.trained_models.append(
f"{model_name} ({training_mode})"
)
# Display additional information
st.info(f"Model trained on {cloud_provider}")
st.info("Compliance check: Model adheres to EU AI Act regulations")
if st.button("Go to Inference"):
st.session_state.mode = "Inference"
st.experimental_rerun()
# Inference mode
def inference_mode():
st.header("Generate Images with Your Personalized Flux.1 Model")
display_inspiration_images()
if not st.session_state.trained_models:
st.warning("No trained models available. Please train a model first.")
return
selected_model = st.selectbox(
"Choose a trained model", st.session_state.trained_models
)
selected_prompt = st.selectbox("Choose a prompt", paris_prompts)
custom_prompt = st.text_input("Or enter your own prompt")
final_prompt = custom_prompt if custom_prompt else selected_prompt
if st.button("Generate Image"):
with st.spinner("Generating image..."):
generated_image = generate_image(final_prompt)
st.image(
generated_image,
caption=f"Generated Image: {final_prompt}",
use_column_width=True,
)
st.info("Image generated using the selected personalized Flux.1 model")
st.info("Prompt and generation parameters logged for reproducibility")
# Main app
def main():
st.title("Flux.1 Personalization Service")
# Add information about managing thousands of model finetunes
st.markdown("""
### Empowering Enterprises with Personalized AI
Learn how to efficiently manage and deploy thousands of customized AI models for your organization:
- Scale your AI infrastructure with cloud-agnostic solutions
- Ensure regulatory compliance across all your models
- Implement robust tracking for data and model lineage
- Maintain version control for consistent and reproducible results
- Optimize resource allocation for cost-effective model training and inference
""")
if not st.session_state.logged_in:
tab1, tab2 = st.tabs(["Login", "Sign Up"])
with tab1:
login()
with tab2:
signup()
else:
st.sidebar.success(f"Logged in as {st.session_state.username}")
if st.sidebar.button("Logout"):
st.session_state.logged_in = False
st.session_state.username = ""
st.experimental_rerun()
mode = st.sidebar.radio("Select Mode", ["Training", "Inference"])
if mode == "Training":
training_mode()
else:
inference_mode()
if __name__ == "__main__":
main()