-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzenml_e2e_modal_deployment.py
625 lines (524 loc) · 22.7 KB
/
zenml_e2e_modal_deployment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import argparse
import os
import logging
import traceback
import importlib.util
import sys
import platform
from typing import List, Dict, Any, Tuple, Annotated, Optional
import torch
import datetime
import uuid
import shutil
import tempfile
from pathlib import Path
from zenml import step, pipeline, Model, log_metadata, get_step_context
from zenml.client import Client
from zenml.integrations.registry import integration_registry
from zenml.enums import ModelStages
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from rich import print
try:
from modal.runner import deploy_app
from modal.output import enable_output
HAS_MODAL = True
except ImportError:
HAS_MODAL = False
logging.warning(
"Modal package not found. Deployment functionality will be limited."
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger("zenml_deployment")
# Define a single model for both implementations
iris_model = Model(
name="iris_classification",
license="MIT",
description="Iris classification model with multiple implementations (sklearn and PyTorch)",
)
MODAL_SECRET_NAME = "modal-deployment-credentials"
# Define a simple neural network model
class IrisModel(torch.nn.Module):
def __init__(self):
super(IrisModel, self).__init__()
self.layer1 = torch.nn.Linear(4, 10)
self.layer2 = torch.nn.Linear(10, 3)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.layer1(x))
x = self.layer2(x)
return x
@step
def get_stack_dependencies() -> Annotated[List[str], "dependencies"]:
"""Get the dependencies required by the active ZenML stack and log them to model.
Returns:
List of dependency strings required by the stack components
"""
logger.info("Collecting dependencies from active ZenML stack...")
client = Client()
active_stack = client.active_stack
# Collect all integration requirements
all_dependencies = []
# Get artifact store requirements
artifact_store = active_stack.artifact_store
artifact_store_flavor = artifact_store.flavor
try:
artifact_store_deps = integration_registry.select_integration_requirements(
artifact_store_flavor
)
all_dependencies.extend(artifact_store_deps)
logger.info(
f"Added {len(artifact_store_deps)} dependencies from artifact store ({artifact_store_flavor})"
)
except KeyError:
logger.info(
f"Artifact store flavor '{artifact_store_flavor}' is not in the integration registry, skipping dependencies"
)
# Check for other stack components and get their dependencies
for component_name in ["orchestrator", "artifact_store", "image_builder"]:
if hasattr(active_stack, component_name):
component = getattr(active_stack, component_name)
if component:
component_flavor = component.flavor
try:
component_deps = (
integration_registry.select_integration_requirements(
component_flavor
)
)
all_dependencies.extend(component_deps)
logger.info(
f"Added {len(component_deps)} dependencies from {component_name} ({component_flavor})"
)
except KeyError:
logger.info(
f"{component_name.capitalize()} flavor '{component_flavor}' is not in the integration registry, skipping dependencies"
)
# Add core dependencies
core_deps = ["zenml", "pydantic", "fastapi", "modal", "uvicorn"]
all_dependencies.extend(core_deps)
logger.info(f"Added {len(core_deps)} core dependencies")
# Add all model-specific dependencies
model_deps = ["scikit-learn", "numpy", "torch"]
all_dependencies.extend(model_deps)
logger.info(f"Added {len(model_deps)} model-specific dependencies")
# Make sure there are no duplicates
unique_deps = list(set(all_dependencies))
logger.info(f"Collected {len(unique_deps)} unique dependencies from active stack")
# Log dependencies to the model if it exists
try:
# Look for existing versions of our model
model_versions = client.list_model_versions(
model_name_or_id="iris_classification"
)
if model_versions:
# Get the latest version
latest_version = sorted(
model_versions, key=lambda x: x.created, reverse=True
)[0]
# Create deployment metadata for both implementations
deployment_metadata = {
"deployment": {
"core_dependencies": unique_deps,
"sklearn_dependencies": unique_deps + ["scikit-learn", "numpy"],
"pytorch_dependencies": unique_deps + ["torch", "numpy"],
"updated_at": datetime.datetime.now().isoformat(),
"modal_secret": MODAL_SECRET_NAME,
}
}
# Log the updated metadata using the zenml log_metadata function
log_metadata(
metadata=deployment_metadata,
model_name="iris_classification",
model_version=latest_version.number,
)
logger.info(
f"Logged dependencies to iris_classification model version {latest_version.number}"
)
except Exception as e:
logger.warning(f"Could not log dependencies to existing model: {e}")
logger.info("Dependencies will be logged during model training steps")
return unique_deps
@step(model=iris_model)
def train_sklearn_model(
stack_dependencies: Annotated[List[str], "dependencies"],
) -> Annotated[RandomForestClassifier, "sklearn_model"]:
"""Train and register a sklearn RandomForestClassifier model."""
logger.info("Training sklearn model...")
# Load dataset
X, y = load_iris(return_X_y=True)
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
# Train model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Evaluate model
train_accuracy = model.score(X_train, y_train)
test_accuracy = model.score(X_test, y_test)
logger.info(f"Sklearn model training accuracy: {train_accuracy:.4f}")
logger.info(f"Sklearn model testing accuracy: {test_accuracy:.4f}")
# Include deployment metadata directly in the model metadata
sklearn_deps = stack_dependencies + ["scikit-learn", "numpy"]
# Get the local Python version
python_version = platform.python_version().rsplit(".", 1)[
0
] # Get major.minor version (e.g., "3.10")
logger.info(f"Using local Python version: {python_version}")
# Log metadata to the model
log_metadata(
metadata={
"framework": "sklearn",
"implementation": "RandomForestClassifier",
"metrics": {
"train_accuracy": float(train_accuracy),
"test_accuracy": float(test_accuracy),
},
"parameters": {"n_estimators": 100, "random_state": 42},
"signature": {
"inputs": [{"name": "X", "dtype": "float64", "shape": [-1, 4]}],
"outputs": [{"name": "y", "dtype": "int64", "shape": [-1]}],
},
# Add deployment metadata
"deployment": {
"framework": "sklearn",
"dependencies": sklearn_deps,
"created_at": datetime.datetime.now().isoformat(),
"modal_secret": MODAL_SECRET_NAME,
"python_version": python_version,
},
},
infer_model=True,
)
# Get the current model - it will already be in "latest" stage by default
current_model = get_step_context().model
logger.info(
f"Registered iris_classification sklearn model as version {current_model.version}"
)
return model
@step(model=iris_model)
def train_pytorch_model(
stack_dependencies: Annotated[List[str], "dependencies"],
) -> Annotated[torch.nn.Module, "pytorch_model"]:
"""Train and register a PyTorch neural network model."""
logger.info("Training PyTorch model...")
# Load dataset
X, y = load_iris(return_X_y=True)
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
# Convert data to PyTorch tensors
X_train_tensor = torch.FloatTensor(X_train)
y_train_tensor = torch.LongTensor(y_train)
X_test_tensor = torch.FloatTensor(X_test)
y_test_tensor = torch.LongTensor(y_test)
# Create model instance
model = IrisModel()
# Define loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# Train the model
num_epochs = 100
for epoch in range(num_epochs):
# Forward pass
outputs = model(X_train_tensor)
loss = criterion(outputs, y_train_tensor)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Evaluate the model
model.eval()
with torch.no_grad():
train_outputs = model(X_train_tensor)
_, train_predicted = torch.max(train_outputs.data, 1)
train_accuracy = (train_predicted == y_train_tensor).sum().item() / len(
y_train_tensor
)
test_outputs = model(X_test_tensor)
_, test_predicted = torch.max(test_outputs.data, 1)
test_accuracy = (test_predicted == y_test_tensor).sum().item() / len(
y_test_tensor
)
logger.info(f"PyTorch model training accuracy: {train_accuracy:.4f}")
logger.info(f"PyTorch model testing accuracy: {test_accuracy:.4f}")
# Get model architecture parameters to save in metadata
architecture = {"input_dim": 4, "hidden_dim": 10, "output_dim": 3}
# Include deployment metadata directly in the model metadata
pytorch_deps = stack_dependencies + ["torch", "numpy"]
# Get the local Python version
python_version = platform.python_version().rsplit(".", 1)[
0
] # Get major.minor version (e.g., "3.10")
logger.info(f"Using local Python version: {python_version}")
# Log metadata to the model
log_metadata(
metadata={
"framework": "pytorch",
"implementation": "IrisModel",
"metrics": {
"train_accuracy": float(train_accuracy),
"test_accuracy": float(test_accuracy),
},
"parameters": {
"learning_rate": 0.01,
"epochs": num_epochs,
"hidden_dim": 10,
},
"signature": {
"inputs": [{"name": "X", "dtype": "float32", "shape": [-1, 4]}],
"outputs": [{"name": "logits", "dtype": "float32", "shape": [-1, 3]}],
},
"architecture": architecture,
# Add deployment metadata
"deployment": {
"framework": "pytorch",
"dependencies": pytorch_deps,
"created_at": datetime.datetime.now().isoformat(),
"modal_secret": MODAL_SECRET_NAME,
"architecture": architecture,
"python_version": python_version,
},
},
infer_model=True,
)
# Get the current model - it will already be in "latest" stage by default
current_model = get_step_context().model
logger.info(
f"Registered iris_classification pytorch model as version {current_model.version}"
)
return model
def load_python_module(file_path):
"""Dynamically load a Python module from a file path."""
module_name = Path(file_path).stem
spec = importlib.util.spec_from_file_location(module_name, file_path)
if spec is None or spec.loader is None:
raise ImportError(f"Could not load module from {file_path}")
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
@step
def modal_deployment(
deploy: bool = False,
stream_logs: bool = False,
app_prefix: str = "iris-model",
promote_to_stage: Optional[str] = None,
) -> Tuple[str, str, Dict[str, Dict[str, Any]]]:
"""Create Modal deployment scripts using templates and optionally deploy them.
Args:
deploy: Whether to actually deploy the scripts using Modal
stream_logs: Whether to stream logs from the deployments
app_prefix: Prefix to use for app names
promote_to_stage: If specified, promote the model to this stage before deployment
Returns:
Tuple containing paths to the sklearn and PyTorch deployment scripts and deployment info
"""
logger.info("Creating Modal deployment scripts using templates...")
# Check if Modal is available if deployment is requested
if deploy and not HAS_MODAL:
raise ImportError("Modal package not installed. Cannot deploy models.")
# If specified, promote models to the requested stage
if promote_to_stage:
client = Client()
# Get latest versions of our models
sklearn_versions = []
pytorch_versions = []
all_versions = client.list_model_versions(
model_name_or_id="iris_classification",
hydrate=True,
)
for version in all_versions:
if hasattr(version, "metadata") and version.metadata:
# Check if run_metadata exists and has a framework attribute
if hasattr(version.metadata, "run_metadata") and hasattr(
version.metadata.run_metadata, "framework"
):
if version.metadata.run_metadata.framework == "sklearn":
sklearn_versions.append(version)
elif version.metadata.run_metadata.framework == "pytorch":
pytorch_versions.append(version)
# Sort by creation time (newest first)
if sklearn_versions:
sklearn_versions = sorted(
sklearn_versions, key=lambda x: x.created, reverse=True
)
latest_sklearn = sklearn_versions[0]
# Promote to requested stage
sklearn_model = Model(
name="iris_classification", version=latest_sklearn.number
)
sklearn_model.set_stage(stage=promote_to_stage, force=True)
logger.info(
f"Promoted sklearn model version {latest_sklearn.number} to {promote_to_stage}"
)
if pytorch_versions:
pytorch_versions = sorted(
pytorch_versions, key=lambda x: x.created, reverse=True
)
latest_pytorch = pytorch_versions[0]
# Promote to requested stage
pytorch_model = Model(
name="iris_classification", version=latest_pytorch.number
)
pytorch_model.set_stage(stage=promote_to_stage, force=True)
logger.info(
f"Promoted PyTorch model version {latest_pytorch.number} to {promote_to_stage}"
)
# Create a temp directory for scripts to prevent cluttering workspace
temp_dir = tempfile.mkdtemp(prefix="modal_deployment_")
scripts_dir = Path(temp_dir)
# Define template paths
sklearn_template = Path("templates/sklearn_deployment_template.py")
pytorch_template = Path("templates/pytorch_deployment_template.py")
# Check if templates exist
if not sklearn_template.exists():
raise FileNotFoundError(f"sklearn template not found at {sklearn_template}")
if not pytorch_template.exists():
raise FileNotFoundError(f"PyTorch template not found at {pytorch_template}")
# Define script paths with unique identifiers (for file saving, but deployment will use stage-based naming)
sklearn_id = uuid.uuid4().hex[:8]
pytorch_id = uuid.uuid4().hex[:8]
sklearn_script_path = scripts_dir / f"deploy_sklearn_{sklearn_id}.py"
pytorch_script_path = scripts_dir / f"deploy_pytorch_{pytorch_id}.py"
# Copy the templates to the scripts directory
shutil.copy(sklearn_template, sklearn_script_path)
shutil.copy(pytorch_template, pytorch_script_path)
# Make the scripts executable
os.chmod(sklearn_script_path, 0o755)
os.chmod(pytorch_script_path, 0o755)
logger.info(f"Created sklearn deployment script at {sklearn_script_path}")
logger.info(f"Created PyTorch deployment script at {pytorch_script_path}")
# Dictionary to hold deployment information
deployment_info = {}
# Deploy the scripts if requested
if deploy:
try:
# Deploy the sklearn model
stage_param = f"--stage {promote_to_stage}" if promote_to_stage else ""
sklearn_app_name = f"{app_prefix}-sklearn"
logger.info(f"Deploying sklearn model as '{sklearn_app_name}'...")
# Load the module containing the Modal app
sklearn_module = load_python_module(sklearn_script_path)
# Find the Modal app in the module
sklearn_app = sklearn_module.app
# Set the stage if needed
if promote_to_stage:
sklearn_module.MODEL_STAGE = promote_to_stage
sklearn_module.DEPLOYMENT_ID = f"sklearn-iris-{promote_to_stage}"
# Deploy the app using the Modal Python API
with enable_output():
sklearn_result = deploy_app(
sklearn_app, name=sklearn_app_name, environment_name="", tag=""
)
logger.info(f"Successfully deployed sklearn model: {sklearn_app_name}")
deployment_info["sklearn"] = {
"app_name": sklearn_app_name,
"script_path": str(sklearn_script_path),
"app_id": sklearn_result.app_id,
"app_url": f"https://modal.com/apps/{sklearn_result.app_id}",
"app_logs_url": sklearn_result.app_logs_url,
"stage": promote_to_stage or "latest",
}
# Stream logs if requested
if stream_logs and hasattr(sklearn_result, "app_logs_url"):
# Note: In a real implementation, we would use Modal's streaming logs functionality
logger.info(
f"Streaming logs for sklearn model from: {sklearn_result.app_logs_url}"
)
# Deploy the PyTorch model
pytorch_app_name = f"{app_prefix}-pytorch"
logger.info(f"Deploying PyTorch model as '{pytorch_app_name}'...")
# Load the module containing the Modal app
pytorch_module = load_python_module(pytorch_script_path)
# Find the Modal app in the module
pytorch_app = pytorch_module.app
# Set the stage if needed
if promote_to_stage:
pytorch_module.MODEL_STAGE = promote_to_stage
pytorch_module.DEPLOYMENT_ID = f"pytorch-iris-{promote_to_stage}"
# Deploy the app using the Modal Python API
with enable_output():
pytorch_result = deploy_app(
pytorch_app, name=pytorch_app_name, environment_name="", tag=""
)
logger.info(f"Successfully deployed PyTorch model: {pytorch_app_name}")
deployment_info["pytorch"] = {
"app_name": pytorch_app_name,
"script_path": str(pytorch_script_path),
"app_id": pytorch_result.app_id,
"app_url": f"https://modal.com/apps/{pytorch_result.app_id}",
"app_logs_url": pytorch_result.app_logs_url,
"stage": promote_to_stage or "latest",
}
# Stream logs if requested
if stream_logs and hasattr(pytorch_result, "app_logs_url"):
# Note: In a real implementation, we would use Modal's streaming logs functionality
logger.info(
f"Streaming logs for PyTorch model from: {pytorch_result.app_logs_url}"
)
except Exception as e:
logger.error(f"Error deploying to Modal: {e}")
logger.error(traceback.format_exc())
# Still return the script paths even if deployment failed
deployment_info["error"] = {
"message": str(e),
"traceback": traceback.format_exc(),
}
return (str(sklearn_script_path), str(pytorch_script_path), deployment_info)
@pipeline(enable_cache=False, name="iris_model_training_and_deployment")
def train_model_pipeline(
deploy_models: bool = False,
stream_logs: bool = False,
promote_to_production: bool = False,
):
"""ZenML pipeline that trains, registers, and deploys Iris classification models.
This pipeline:
1. Collects the active stack dependencies
2. Trains a scikit-learn RandomForestClassifier with deployment metadata
3. Trains a PyTorch neural network with deployment metadata
4. Creates deployment scripts for each model using templates
5. Optionally promotes models to production stage
6. Optionally deploys the models to Modal using Python APIs
Args:
deploy_models: Whether to deploy the models to Modal
stream_logs: Whether to stream logs from Modal deployments
promote_to_production: Whether to promote models to production stage before deployment
"""
stack_dependencies = get_stack_dependencies()
train_sklearn_model(stack_dependencies=stack_dependencies)
train_pytorch_model(stack_dependencies=stack_dependencies)
# Determine stage for promotion if we're deploying to production
promote_to_stage = ModelStages.PRODUCTION if promote_to_production else None
modal_deployment(
deploy=deploy_models,
stream_logs=stream_logs,
promote_to_stage=promote_to_stage,
after=["train_sklearn_model", "train_pytorch_model"],
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train and deploy iris classification models"
)
parser.add_argument(
"--deploy", action="store_true", help="Deploy models to Modal after training"
)
parser.add_argument(
"--stream-logs", action="store_true", help="Stream logs from Modal deployments"
)
parser.add_argument(
"--production",
action="store_true",
help="Promote models to production stage before deployment",
)
args = parser.parse_args()
train_model_pipeline(
deploy_models=args.deploy,
stream_logs=args.stream_logs,
promote_to_production=args.production,
)