-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
237 lines (207 loc) · 9.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import pickle
from sumeval.metrics.rouge import RougeCalculator
from sumeval.metrics.bleu import BLEUCalculator
from hyperdash import Experiment
import util
def train_classification(data_loader, dev_iter, encoder, decoder, mlp, args):
lr = args.lr
encoder_opt = torch.optim.Adam(encoder.parameters(), lr=lr)
decoder_opt = torch.optim.Adam(decoder.parameters(), lr=lr)
mlp_opt = torch.optim.Adam(mlp.parameters(), lr=lr)
encoder.train()
decoder.train()
mlp.train()
steps = 0
for epoch in range(1, args.epochs+1):
alpha = util.sigmoid_annealing_schedule(epoch, args.epochs)
print("=======Epoch========")
print(epoch)
for batch in data_loader:
feature, target = Variable(batch["sentence"]), Variable(batch["label"])
if args.use_cuda:
encoder.cuda()
decoder.cuda()
mlp.cuda()
feature, target = feature.cuda(), target.cuda()
encoder_opt.zero_grad()
decoder_opt.zero_grad()
mlp_opt.zero_grad()
h = encoder(feature)
prob = decoder(h)
log_prob = mlp(h.squeeze())
reconstruction_loss = compute_cross_entropy(prob, feature)
supervised_loss = F.nll_loss(log_prob, target.view(target.size()[0]))
loss = alpha * reconstruction_loss + supervised_loss
loss.backward()
encoder_opt.step()
decoder_opt.step()
mlp_opt.step()
steps += 1
print("Epoch: {}".format(epoch))
print("Steps: {}".format(steps))
print("Loss: {}".format(loss.data[0]))
# check reconstructed sentence and classification
if steps % args.log_interval == 0:
print("Test!!")
input_data = feature[0]
input_label = target[0]
single_data = prob[0]
_, predict_index = torch.max(single_data, 1)
input_sentence = util.transform_id2word(input_data.data, data_loader.dataset.index2word, lang="ja")
predict_sentence = util.transform_id2word(predict_index.data, data_loader.dataset.index2word, lang="ja")
print("Input Sentence:")
print(input_sentence)
print("Output Sentence:")
print(predict_sentence)
eval_classification(encoder, mlp, input_data, input_label)
if epoch % args.lr_decay_interval == 0:
# decrease learning rate
lr = lr / 5
encoder_opt = torch.optim.Adam(encoder.parameters(), lr=lr)
decoder_opt = torch.optim.Adam(decoder.parameters(), lr=lr)
mlp_opt = torch.optim.Adam(mlp.parameters(), lr=lr)
encoder.train()
decoder.train()
mlp.train()
if epoch % args.save_interval == 0:
util.save_models(encoder, args.save_dir, "encoder", steps)
util.save_models(decoder, args.save_dir, "decoder", steps)
util.save_models(mlp, args.save_dir, "mlp", steps)
# finalization
# save vocabulary
with open("word2index", "wb") as w2i, open("index2word", "wb") as i2w:
pickle.dump(data_loader.dataset.word2index, w2i)
pickle.dump(data_loader.dataset.index2word, i2w)
# save models
util.save_models(encoder, args.save_dir, "encoder", "final")
util.save_models(decoder, args.save_dir, "decoder", "final")
util.save_models(mlp, args.save_dir, "mlp", "final")
print("Finish!!!")
def train_reconstruction(train_loader, test_loader, encoder, decoder, args):
exp = Experiment("Reconstruction Training")
try:
lr = args.lr
encoder_opt = torch.optim.Adam(encoder.parameters(), lr=lr)
decoder_opt = torch.optim.Adam(decoder.parameters(), lr=lr)
encoder.train()
decoder.train()
steps = 0
for epoch in range(1, args.epochs+1):
print("=======Epoch========")
print(epoch)
for batch in train_loader:
feature = Variable(batch)
if args.use_cuda:
encoder.cuda()
decoder.cuda()
feature = feature.cuda()
encoder_opt.zero_grad()
decoder_opt.zero_grad()
h = encoder(feature)
prob = decoder(h)
reconstruction_loss = compute_cross_entropy(prob, feature)
reconstruction_loss.backward()
encoder_opt.step()
decoder_opt.step()
steps += 1
print("Epoch: {}".format(epoch))
print("Steps: {}".format(steps))
print("Loss: {}".format(reconstruction_loss.data[0] / args.sentence_len))
exp.metric("Loss", reconstruction_loss.data[0] / args.sentence_len)
# check reconstructed sentence
if steps % args.log_interval == 0:
print("Test!!")
input_data = feature[0]
single_data = prob[0]
_, predict_index = torch.max(single_data, 1)
input_sentence = util.transform_id2word(input_data.data, train_loader.dataset.index2word, lang="en")
predict_sentence = util.transform_id2word(predict_index.data, train_loader.dataset.index2word, lang="en")
print("Input Sentence:")
print(input_sentence)
print("Output Sentence:")
print(predict_sentence)
if steps % args.test_interval == 0:
eval_reconstruction(encoder, decoder, test_loader, args)
if epoch % args.lr_decay_interval == 0:
# decrease learning rate
lr = lr / 5
encoder_opt = torch.optim.Adam(encoder.parameters(), lr=lr)
decoder_opt = torch.optim.Adam(decoder.parameters(), lr=lr)
encoder.train()
decoder.train()
if epoch % args.save_interval == 0:
util.save_models(encoder, args.save_dir, "encoder", steps)
util.save_models(decoder, args.save_dir, "decoder", steps)
# finalization
# save vocabulary
with open("word2index", "wb") as w2i, open("index2word", "wb") as i2w:
pickle.dump(train_loader.dataset.word2index, w2i)
pickle.dump(train_loader.dataset.index2word, i2w)
# save models
util.save_models(encoder, args.save_dir, "encoder", "final")
util.save_models(decoder, args.save_dir, "decoder", "final")
print("Finish!!!")
finally:
exp.end()
def compute_cross_entropy(log_prob, target):
# compute reconstruction loss using cross entropy
loss = [F.nll_loss(sentence_emb_matrix, word_ids, size_average=False) for sentence_emb_matrix, word_ids in zip(log_prob, target)]
average_loss = sum([torch.sum(l) for l in loss]) / log_prob.size()[0]
return average_loss
def eval_classification(encoder, mlp, feature, label):
encoder.eval()
mlp.eval()
h = encoder(feature)
h = h.view(1, 500)
out = mlp(h)
value, predicted = torch.max(out, 0)
print("Input label: {}".format(label.data[0]))
print("Predicted label: {}".format(predicted.data[0]))
print("Predicted value: {}".format(value.data[0]))
encoder.train()
mlp.train()
def eval_reconstruction(encoder, decoder, data_iter, args):
print("=================Eval======================")
encoder.eval()
decoder.eval()
avg_loss = 0
rouge_1 = 0.0
rouge_2 = 0.0
index2word = data_iter.dataset.index2word
for batch in data_iter:
feature = Variable(batch, requires_grad=False)
if args.use_cuda:
feature = feature.cuda()
h = encoder(feature)
prob = decoder(h)
_, predict_index = torch.max(prob, 2)
original_sentences = [util.transform_id2word(sentence, index2word, "en") for sentence in batch]
predict_sentences = [util.transform_id2word(sentence, index2word, "en") for sentence in predict_index.data]
r1, r2 = calc_rouge(original_sentences, predict_sentences)
rouge_1 += r1
rouge_2 += r2
reconstruction_loss = compute_cross_entropy(prob, feature)
avg_loss += reconstruction_loss.data[0]
avg_loss = avg_loss / len(data_iter.dataset)
avg_loss = avg_loss / args.sentence_len
rouge_1 = rouge_1 / len(data_iter.dataset)
rouge_2 = rouge_2 / len(data_iter.dataset)
print("Evaluation - loss: {} Rouge1: {} Rouge2: {}".format(avg_loss, rouge_1, rouge_2))
print("===============================================================")
encoder.train()
decoder.train()
def calc_rouge(original_sentences, predict_sentences):
rouge_1 = 0.0
rouge_2 = 0.0
for original, predict in zip(original_sentences, predict_sentences):
# Remove padding
original, predict = original.replace("<PAD>", "").strip(), predict.replace("<PAD>", "").strip()
rouge = RougeCalculator(stopwords=True, lang="en")
r1 = rouge.rouge_1(summary=predict, references=original)
r2 = rouge.rouge_2(summary=predict, references=original)
rouge_1 += r1
rouge_2 += r2
return rouge_1, rouge_2