-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_reconstruction.py
69 lines (60 loc) · 3.61 KB
/
main_reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
import model
from datasets import TextClassificationDataset, ToTensor, load_hotel_review_data
from train import train_reconstruction
import argparse
import math
def main():
parser = argparse.ArgumentParser(description='text convolution-deconvolution auto-encoder model')
# learning
parser.add_argument('-lr', type=float, default=0.001, help='initial learning rate')
parser.add_argument('-epochs', type=int, default=10, help='number of epochs for train')
parser.add_argument('-batch_size', type=int, default=16, help='batch size for training')
parser.add_argument('-lr_decay_interval', type=int, default=4,
help='how many epochs to wait before decrease learning rate')
parser.add_argument('-log_interval', type=int, default=256,
help='how many steps to wait before logging training status')
parser.add_argument('-test_interval', type=int, default=2,
help='how many epochs to wait before testing')
parser.add_argument('-save_interval', type=int, default=2,
help='how many epochs to wait before saving')
parser.add_argument('-save_dir', type=str, default='rec_snapshot', help='where to save the snapshot')
# data
parser.add_argument('-data_path', type=str, help='data path')
parser.add_argument('-shuffle', default=False, help='shuffle data every epoch')
parser.add_argument('-sentence_len', type=int, default=253, help='how many tokens in a sentence')
# model
parser.add_argument('-embed_dim', type=int, default=300, help='number of embedding dimension')
parser.add_argument('-filter_size', type=int, default=300, help='filter size of convolution')
parser.add_argument('-filter_shape', type=int, default=5,
help='filter shape to use for convolution')
parser.add_argument('-latent_size', type=int, default=900, help='size of latent variable')
parser.add_argument('-tau', type=float, default=0.01, help='temperature parameter')
parser.add_argument('-use_cuda', action='store_true', default=True, help='whether using cuda')
# option
parser.add_argument('-enc_snapshot', type=str, default=None, help='filename of encoder snapshot ')
parser.add_argument('-dec_snapshot', type=str, default=None, help='filename of decoder snapshot ')
args = parser.parse_args()
train_data, test_data = load_hotel_review_data(args.data_path, args.sentence_len)
train_loader, test_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=args.shuffle),\
DataLoader(test_data, batch_size=args.batch_size, shuffle=args.shuffle)
k = args.embed_dim
v = train_data.vocab_lennght()
t1 = args.sentence_len + 2 * (args.filter_shape - 1)
t2 = int(math.floor((t1 - args.filter_shape) / 2) + 1) # "2" means stride size
t3 = int(math.floor((t2 - args.filter_shape) / 2) + 1) - 2
if args.enc_snapshot is None or args.dec_snapshot is None:
print("Start from initial")
embedding = nn.Embedding(v, k, max_norm=1.0, norm_type=2.0)
encoder = model.ConvolutionEncoder(embedding, t3, args.filter_size, args.filter_shape, args.latent_size)
decoder = model.DeconvolutionDecoder(embedding, args.tau, t3, args.filter_size, args.filter_shape, args.latent_size)
else:
print("Restart from snapshot")
encoder = torch.load(args.enc_snapshot)
decoder = torch.load(args.dec_snapshot)
train_reconstruction(train_loader, test_loader, encoder, decoder, args)
if __name__ == '__main__':
main()