-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathalexnet.py
145 lines (115 loc) · 5.1 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from keras import models, layers
import keras
from keras.datasets import mnist, cifar10
from keras import backend as K
import tensorflow as tf
import time
class AlexNet(models.Sequential):
optimizers = []
losss = ['categorical_crossentropy']
def __init__(self, input_shape, num_classes):
super().__init__()
self.add(layers.Conv2D(filters=96, input_shape=input_shape, kernel_size=(11,11),strides=(4,4), padding='valid'))
self.add(layers.Activation('relu'))
# Pooling
self.add(layers.MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
# Batch Normalisation before passing it to the next layer
self.add(layers.BatchNormalization())
# 2nd Convolutional Layer
self.add(layers.Conv2D(filters=256, kernel_size=(11,11), strides=(1,1), padding='valid'))
self.add(layers.Activation('relu'))
# Pooling
self.add(layers.MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
# Batch Normalisation
self.add(layers.BatchNormalization())
# 3rd Convolutional Layer
self.add(layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
self.add(layers.Activation('relu'))
# Batch Normalisation
self.add(layers.BatchNormalization())
# 4th Convolutional Layer
self.add(layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
self.add(layers.Activation('relu'))
# Batch Normalisation
self.add(layers.BatchNormalization())
# 5th Convolutional Layer
self.add(layers.Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='valid'))
self.add(layers.Activation('relu'))
# Pooling
self.add(layers.MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
# Batch Normalisation
self.add(layers.BatchNormalization())
# Passing it to a dense layer
self.add(layers.Flatten())
# 1st Dense Layer
self.add(layers.Dense(4096, input_shape=input_shape))
self.add(layers.Activation('relu'))
# Add Dropout to prevent overfitting
self.add(layers.Dropout(0.4))
# Batch Normalisation
self.add(layers.BatchNormalization())
# 2nd Dense Layer
self.add(layers.Dense(4096))
self.add(layers.Activation('relu'))
# Add Dropout
self.add(layers.Dropout(0.4))
# Batch Normalisation
self.add(layers.BatchNormalization())
# 3rd Dense Layer
self.add(layers.Dense(1000))
self.add(layers.Activation('relu'))
# Add Dropout
self.add(layers.Dropout(0.4))
# Batch Normalisation
self.add(layers.BatchNormalization())
self.add(layers.Dense(num_classes, activation='softmax'))
self.compile(loss=self.losss[0], metrics=['accuracy'], optimizer=self.optimizers[0] if len(self.optimizers) else "sgd")
def get_flops(model):
run_meta = tf.RunMetadata()
opts = tf.profiler.ProfileOptionBuilder.float_operation()
# We use the Keras session graph in the call to the profiler.
flops = tf.profiler.profile(graph=K.get_session().graph,
run_meta=run_meta, cmd='op', options=opts)
return flops.total_float_ops
def run(dataset="mnist", epochs=12):
batch_size = 128
num_classes = 10
# the data, split between train and test sets
if dataset=="mnist":
(x_train, y_train), (x_test, y_test) = mnist.load_data()
elif dataset=="cifar":
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# input image dimensions
img_rows, img_cols, channels = x_train.shape[1], x_train.shape[2], x_train.shape[3] if len(x_train.shape) ==4 else 1
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], channels, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], channels, img_rows, img_cols)
input_shape = (channels, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channels)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)
input_shape = (img_rows, img_cols, channels)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
model = AlexNet(input_shape, num_classes)
begin_training = time.time()
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
print('model params:', model.count_params())
#print("flops", get_flops(model))
if __name__ == "__main__":
run("cifar", 12)