forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassignment_with_constraints_sat.py
133 lines (109 loc) · 3.99 KB
/
assignment_with_constraints_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solve an assignment problem with combination constraints on workers."""
from typing import Sequence
from absl import app
from ortools.sat.python import cp_model
def solve_assignment():
"""Solve the assignment problem."""
# Data.
cost = [
[90, 76, 75, 70, 50, 74],
[35, 85, 55, 65, 48, 101],
[125, 95, 90, 105, 59, 120],
[45, 110, 95, 115, 104, 83],
[60, 105, 80, 75, 59, 62],
[45, 65, 110, 95, 47, 31],
[38, 51, 107, 41, 69, 99],
[47, 85, 57, 71, 92, 77],
[39, 63, 97, 49, 118, 56],
[47, 101, 71, 60, 88, 109],
[17, 39, 103, 64, 61, 92],
[101, 45, 83, 59, 92, 27],
]
group1 = [
[0, 0, 1, 1], # Workers 2, 3
[0, 1, 0, 1], # Workers 1, 3
[0, 1, 1, 0], # Workers 1, 2
[1, 1, 0, 0], # Workers 0, 1
[1, 0, 1, 0],
] # Workers 0, 2
group2 = [
[0, 0, 1, 1], # Workers 6, 7
[0, 1, 0, 1], # Workers 5, 7
[0, 1, 1, 0], # Workers 5, 6
[1, 1, 0, 0], # Workers 4, 5
[1, 0, 0, 1],
] # Workers 4, 7
group3 = [
[0, 0, 1, 1], # Workers 10, 11
[0, 1, 0, 1], # Workers 9, 11
[0, 1, 1, 0], # Workers 9, 10
[1, 0, 1, 0], # Workers 8, 10
[1, 0, 0, 1],
] # Workers 8, 11
sizes = [10, 7, 3, 12, 15, 4, 11, 5]
total_size_max = 15
num_workers = len(cost)
num_tasks = len(cost[1])
all_workers = range(num_workers)
all_tasks = range(num_tasks)
# Model.
model = cp_model.CpModel()
# Variables
selected = [
[model.NewBoolVar("x[%i,%i]" % (i, j)) for j in all_tasks] for i in all_workers
]
works = [model.NewBoolVar("works[%i]" % i) for i in all_workers]
# Constraints
# Link selected and workers.
for i in range(num_workers):
model.AddMaxEquality(works[i], selected[i])
# Each task is assigned to at least one worker.
for j in all_tasks:
model.Add(sum(selected[i][j] for i in all_workers) >= 1)
# Total task size for each worker is at most total_size_max
for i in all_workers:
model.Add(sum(sizes[j] * selected[i][j] for j in all_tasks) <= total_size_max)
# Group constraints.
model.AddAllowedAssignments([works[0], works[1], works[2], works[3]], group1)
model.AddAllowedAssignments([works[4], works[5], works[6], works[7]], group2)
model.AddAllowedAssignments([works[8], works[9], works[10], works[11]], group3)
# Objective
model.Minimize(
sum(selected[i][j] * cost[i][j] for j in all_tasks for i in all_workers)
)
# Solve and output solution.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
print("Total cost = %i" % solver.ObjectiveValue())
print()
for i in all_workers:
for j in all_tasks:
if solver.BooleanValue(selected[i][j]):
print(
"Worker ", i, " assigned to task ", j, " Cost = ", cost[i][j]
)
print()
print("Statistics")
print(" - conflicts : %i" % solver.NumConflicts())
print(" - branches : %i" % solver.NumBranches())
print(" - wall time : %f s" % solver.WallTime())
def main(argv: Sequence[str]) -> None:
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
solve_assignment()
if __name__ == "__main__":
app.run(main)