-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
475 lines (384 loc) · 19.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#============ Custom tensorboard logging ============#
from TbLogger import Logger
#============ Basic imports ============#
import pickle
import gc
# import cv2
import copy
import os
import time
import tqdm
import glob
import shutil
import argparse
import pandas as pd
import numpy as np
from PIL import Image
# from skimage.io import imsave,imread
# set no multi-processing for cv2 to avoid collisions with data loader
# cv2.setNumThreads(0)
#============ PyTorch imports ============#
import torch
import torch.nn as nn
# import torch.nn.parallel
# import torch.backends.cudnn as cudnn
import torch.optim
from torch.optim.lr_scheduler import MultiStepLR
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# import torchvision.models as models
# from torch.nn import Sigmoid
#============ Custom classes ============#
from VAE import VAE, VAEBaseline, VAESimplifiedFC, VAE1N, VAEBaselineConv
from VAELoss import VAELossView as VAELoss
from VAELoss import loss_function
from pytorch_ssim import SSIM
from FMNISTDataset import FMNISTDataset
from Util import str2bool,restricted_float,to_np,save_checkpoint,AverageMeter,img_stack_horizontally,img_stack_vertically
parser = argparse.ArgumentParser(description='VAE FMNIST example')
# ============ basic params ============#
parser.add_argument('--epochs', default=30, type=int, help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--batch-size', default=64, type=int, help='mini-batch size (default: 64)')
parser.add_argument('--seed', default=42, type=int, help='random seed (default: 42)')
# ============ data loader and model params ============#
parser.add_argument('--model_multiplier', default=2.0, type=float, help='model size multiplier')
parser.add_argument('--do_augs', default=False, type=str2bool, help='Whether to use augs')
parser.add_argument('--model_type', default='fcn', type=str, help='fcn or fc or fcs')
parser.add_argument('--dataset_type', default='fmnist', type=str, help='mnist of fmnist')
parser.add_argument('--latent_space_size', default=10, type=int, help='the size of the latent space')
# ============ optimization params ============#
parser.add_argument('--lr', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--m1', default=5, type=int, help='lr decay milestone 1')
parser.add_argument('--m2', default=20, type=int, help='lr decay milestone 2')
parser.add_argument('--optimizer', default='adam', type=str, help='model optimizer')
parser.add_argument('--do_running_mean', default=False, type=str2bool, help='Whether to use running mean for loss')
parser.add_argument('--img_loss_weight', default=1.0, type=float, help='image reconstruction loss part')
parser.add_argument('--kl_loss_weight', default=1.0, type=float, help='kl divergence part')
parser.add_argument('--image_loss_type', default='bce', type=str, help='bce, mse or ssim')
parser.add_argument('--ssim_window_size', default=5, type=int, help='ssim_window_size')
parser.add_argument('--split_filter', default=3, type=int, help='where to split weights for mu and logvar')
# ============ logging params and utilities ============#
parser.add_argument('--print-freq', default=10, type=int, help='print frequency (default: 10)')
parser.add_argument('--lognumber', default='test_model', type=str, help='text id for saving logs')
parser.add_argument('--tensorboard', default=False, type=str2bool, help='Use tensorboard to for loss visualization')
parser.add_argument('--tensorboard_images', default=False, type=str2bool, help='Use tensorboard to see images')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
# ============ other params ============#
parser.add_argument('--no_cuda', dest='no_cuda', action='store_true', default=False, help='enables CUDA training')
parser.add_argument('--predict', dest='predict', action='store_true', help='generate prediction masks')
parser.add_argument('--predict_train', dest='predict_train', action='store_true', help='generate prediction masks')
parser.add_argument('--evaluate', dest='evaluate', action='store_true', help='just evaluate')
train_minib_counter = 0
valid_minib_counter = 0
best_loss = 100000000
args = parser.parse_args()
print(args)
# PyTorch 0.4 compatibility
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
kwargs = {'num_workers': 0, 'pin_memory': True} if args.cuda else {}
# Set the Tensorboard logger
if args.tensorboard or args.tensorboard_images:
if not (args.predict or args.predict_train):
logger = Logger('./tb_logs/{}'.format(args.lognumber))
else:
logger = Logger('./tb_logs/{}'.format(args.lognumber + '_predictions'))
def main():
global args, best_loss
global logger
global device, kwargs
if args.model_type == 'fcn':
filter_list = [1,
int(args.model_multiplier*4),
int(args.model_multiplier*8),
int(args.model_multiplier*16),
int(args.model_multiplier*32),
int(args.model_multiplier*64),
10]
print('Model filter sizes list is {}'.format(filter_list))
model = VAE(filters =filter_list,
dilations =[1, 1, 1, 1, 1, 1],
paddings =[0, 0, 0, 0, 0, 0],
strides =[1, 1, 2, 1, 2, 2],
decoder_kernels =[3, 4, 4, 4, 4, 4],
decoder_paddings =[1, 0, 0, 0, 0, 0],
decoder_strides =[1, 1, 1, 2, 2, 1],
split_filter = args.split_filter).to(device)
print(model)
elif args.model_type == 'fcns_1n':
filter_list = [1,
int(args.model_multiplier*4),
int(args.model_multiplier*8),
int(args.model_multiplier*16),
]
print('Model filter sizes list is {}'.format(filter_list))
model = VAE1N(filters =filter_list,
dilations =[1, 1, 1],
paddings =[1, 1, 1],
strides =[2, 2, 2],
decoder_kernels =[4, 4, 3],
decoder_paddings =[1, 1, 1],
decoder_strides =[2, 2, 2],
latent_space_size = 10).to(device)
elif args.model_type == 'fcns':
model = VAESimplifiedFC().to(device)
elif args.model_type == 'fc':
model = VAEBaseline(latent_space_size=args.latent_space_size).to(device)
elif args.model_type == 'fc_conv':
model = VAEBaselineConv(latent_space_size=args.latent_space_size).to(device)
if args.optimizer.startswith('adam'):
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),
# Only finetunable params
lr=args.lr)
elif args.optimizer.startswith('rmsprop'):
optimizer = torch.optim.RMSprop(filter(lambda p: p.requires_grad, model.parameters()),
# Only finetunable params
lr=args.lr)
elif args.optimizer.startswith('sgd'):
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()),
# Only finetunable params
lr=args.lr)
else:
raise ValueError('Optimizer not supported')
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.predict:
pass
elif args.evaluate:
pass
else:
if args.dataset_type=='fmnist':
train_dataset = FMNISTDataset(mode = 'train',
random_state = args.seed,
use_augs = args.do_augs)
val_dataset = FMNISTDataset(mode = 'val',
random_state = args.seed,
use_augs = False)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
**kwargs)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
**kwargs)
elif args.dataset_type=='mnist':
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
criterion = VAELoss(use_running_mean=args.do_running_mean,
image_loss_type=args.image_loss_type,
image_loss_weight=args.img_loss_weight,
kl_loss_weight=args.kl_loss_weight,
ssim_window_size=args.ssim_window_size,
latent_space_size=args.latent_space_size).to(device)
# criterion = loss_function
ssim = SSIM(window_size = args.ssim_window_size,
size_average = True).to(device)
scheduler = MultiStepLR(optimizer, milestones=[args.m1,args.m2], gamma=0.1)
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
train_loss,train_img_loss,train_kl_loss,train_ssim = train(train_loader,
model,
criterion,
ssim,
optimizer,
epoch)
# evaluate on validation set
val_loss,val_img_loss,val_kl_loss,val_ssim = validate(val_loader,
model,
criterion,
ssim)
scheduler.step()
#============ TensorBoard logging ============#
# Log the scalar values
if args.tensorboard:
info = {
'eph_tr_loss': train_loss,
'eph_tr_ssim': train_ssim,
'eph_val_loss': val_loss,
'eph_val_ssim': val_ssim,
'eph_tr_img_loss': train_img_loss,
'eph_tr_kl_loss': train_kl_loss,
'eph_val_img_loss': val_img_loss,
'eph_val_kl_loss': val_kl_loss,
}
for tag, value in info.items():
logger.scalar_summary(tag, value, epoch+1)
# remember best prec@1 and save checkpoint
is_best = val_loss < best_loss
best_loss = min(val_loss, best_loss)
save_checkpoint({
'epoch': epoch + 1,
'optimizer': optimizer.state_dict(),
'state_dict': model.state_dict(),
'best_loss': best_loss,
},
is_best,
'weights/{}_checkpoint.pth.tar'.format(str(args.lognumber)),
'weights/{}_best.pth.tar'.format(str(args.lognumber))
)
def train(train_loader,
model,
criterion,
ssim,
optimizer,
epoch):
global train_minib_counter
global logger
# scheduler.batch_step()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
img_losses = AverageMeter()
kl_losses = AverageMeter()
ssims = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.float().to(device)
out, mu, logvar = model(input)
loss,image_loss,kl_loss = criterion(out,
input,
mu,
logvar)
ssim_ = ssim(out.view(-1,1,28,28), input.view(-1,1,28,28))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# measure accuracy and record loss
losses.update(loss.item(), input.size(0))
img_losses.update(image_loss.item(), input.size(0))
kl_losses.update(kl_loss.item(), input.size(0))
ssims.update(ssim_.item(), input.size(0))
# log the current lr
current_lr = optimizer.state_dict()['param_groups'][0]['lr']
#============ TensorBoard logging ============#
# Log the scalar values
if args.tensorboard:
info = {
'train_loss': losses.val,
'train_img_loss': img_losses.val,
'train_kl_loss': kl_losses.val,
'train_ssim': ssims.val,
'train_lr': current_lr,
}
for tag, value in info.items():
logger.scalar_summary(tag, value, train_minib_counter)
train_minib_counter += 1
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'REC {img_losses.val:.4f} ({img_losses.avg:.4f})\t'
'KL {kl_losses.val:.4f} ({kl_losses.avg:.4f})\t'
'SSIM {ssims.val:.4f} ({ssims.avg:.4f})\t'.format(
epoch,i, len(train_loader),
batch_time=batch_time,data_time=data_time,
loss=losses,img_losses=img_losses,kl_losses=kl_losses,
ssims=ssims))
print(' * Avg Train Loss {loss.avg:.4f}'.format(loss=losses))
print(' * Avg Train SSIM {ssims.avg:.4f}'.format(ssims=ssims))
return losses.avg,img_losses.avg,kl_losses.avg,ssims.avg
def validate(val_loader,
model,
criterion,
ssim,
):
global valid_minib_counter
global logger
# scheduler.batch_step()
batch_time = AverageMeter()
losses = AverageMeter()
img_losses = AverageMeter()
kl_losses = AverageMeter()
ssims = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, _) in enumerate(val_loader):
input = input.float().to(device)
# compute output
out, mu, logvar = model(input)
loss,image_loss,kl_loss = criterion(out,
input,
mu,
logvar)
ssim_ = ssim(out.view(-1,1,28,28), input.view(-1,1,28,28))
#============ TensorBoard logging ============#
if args.tensorboard_images:
if i % (args.print_freq*10) == 0:
n = min(input.size(0), 40)
row1 = img_stack_horizontally([Image.fromarray(np.uint8(_*255)) for _ in input[:n,0].cpu().numpy()])
row2 = img_stack_horizontally([Image.fromarray(np.uint8(_*255)) for _ in out.view(args.batch_size, 1, 28, 28)[:n,0].cpu().numpy()])
panno = img_stack_vertically([row1, row2])
# save_image(comparison.cpu(),
# 'results/reconstruction_' + str(epoch) + '.png', nrow=n)
# (66, 1320, 4)
info = {
'panno': np.array(panno)[np.newaxis,:,:,0:3]
}
for tag, images in info.items():
logger.image_summary(tag, images, valid_minib_counter)
# measure accuracy and record loss
losses.update(loss.item(), input.size(0))
img_losses.update(image_loss.item(), input.size(0))
kl_losses.update(kl_loss.item(), input.size(0))
ssims.update(ssim_.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
#============ TensorBoard logging ============#
# Log the scalar values
if args.tensorboard:
info = {
'val_loss': losses.val,
'val_img_loss': img_losses.val,
'val_kl_loss': kl_losses.val,
'val_ssim': ssims.val,
}
for tag, value in info.items():
logger.scalar_summary(tag, value, valid_minib_counter)
valid_minib_counter += 1
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'SSIM {ssims.val:.4f} ({ssims.avg:.4f})\t'.format(
i, len(val_loader), batch_time=batch_time,
loss=losses,ssims=ssims))
print(' * Avg Val Loss {loss.avg:.4f}'.format(loss=losses))
print(' * Avg Val SSIM {ssims.avg:.4f}'.format(ssims=ssims))
return losses.avg, img_losses.avg, kl_losses.avg,ssims.avg
if __name__ == '__main__':
main()