-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
592 lines (437 loc) · 34.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
<!DOCTYPE HTML>
<!--
Dimension by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
-->
<html>
<head>
<title>Raghav Govind Jha</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="assets/css/main.css" />
<noscript><link rel="stylesheet" href="assets/css/noscript.css" /></noscript>
</head>
<body class="is-preload">
<meta charset="UTF-8">
<meta name="viewport" content="others\width=device-width, initial-scale=1">
<link rel="stylesheet" href="others\w3.css">
<link rel="stylesheet" href="others\css?family=Lato">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<style>
body {font-family: "Lato", serif}
.mySlides {display: none}
p {margin:0 0 1.5em; color: #797979;}
em {font-style:italic;}
a:link {color: CornflowerBlue; text-decoration: none;}
a:visited {color: CornflowerBlue; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
div {
text-align: justify;
text-justify: inter-word;
}
</style>
<body>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
src="http://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<!-- Wrapper -->
<div id="wrapper">
<!-- Header -->
<header id="header">
<div class="logo">
<span class="icon fa-triangle"></span>
</div>
<div class="content">
<div class="inner">
<h1> Raghav Govind Jha
<h5> Postdoc at Jefferson National Lab, VA, USA <h5>
<p> Past: Perimeter Institute (2019-2022), Syracuse University (2013-2019) </p>
<!-- <p>One line research theme: Interested in nature, computation, and computability of nature.</p> -->
<p>Google Scholar<a href="https://scholar.google.com/citations?user=1-lEPu4AAAAJ&hl=en&oi=sra" class="icon brands fa-google scholar"><span class="label">Google Scholar</span></a>,
ORCiD<a href="https://orcid.org/0000-0003-2933-0102" class="icon brands fa-orcid"><span class="label">ORCiD</span></a>, <a href="mailto:raghav.govind.jha@gmail.com">raghav.govind.jha@gmail.com</a>,<a href="https://github.com/rgjha/" class="icon brands fa-github"><span class="label">GitHub</span></a>, <a href="https://twitter.com/rgjha1989" class="icon brands fa-twitter"><span class="label">Twitter</span></a></p>
<p> <a href="raghav_jha_cv.pdf"> CV [PDF] <a href="cv.html">CV [HTML]</a> </p>
</div>
<h5> Check out our recent paper <a href="https://arxiv.org/abs/2411.13645"> </h5>
<img src="gallery/rec_pap.png" style="width: 750px; height: 300px;" >
</a>
</div>
<nav>
<ul>
<li><a href="#about">About</a></li>
<li><a href="#research">Research</a></li>
<li><a href="#publications">Publications</a></li>
<li><a href="#talks">Talks</a></li>
<li><a href="#notes">Notes</a></li>
<li><a href="#ds_stuff">ML Stuff</a></li>
<li><a href="#photos">Travel Photos</a></li>
</ul>
</nav>
</header>
<!-- Main -->
<div id="main">
<!-- About -->
<article id="about">
<h2 class="major">About</h2>
<img src="gallery/photo1.jpeg" style="width: 200px; height: 300px;">
</p>
Hi! I am a postdoc at <a href="https://www.jlab.org">Jefferson Lab</a> working on various aspects of quantum computing, utilizing both qubit-based and qumode-based approaches to universal quantum computing. The US Department of Energy's (DOE) established research centers fund this position through C2QA, one of the five Quantum Information Science (QIS) centers. The goal is to work toward quantum advantage in nuclear physics, chemistry, materials science, and condensed matter physics, among many others. I also explore a wide range of problems using tensor networks and using machine learning, especially neural quantum states (NQS). In recent years, it has been argued that such states can reproduce the volume-law entanglement of the ground state of certain Hamiltonians, which needs complicated tensor networks that are hard to optimize (such as MERA).
My mentor at Jefferson Lab is Robert Edwards, who is an expert in hadron spectroscopy and computational physics.
</p>
Before this position, I spent three years at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, where I worked with Pedro Vieira. In 2019, I completed my Ph.D. from Syracuse University and worked with Simon Catterall on various aspects of lattice field theory based on Monte Carlo simulations, especially its application to the thermodynamics of black holes in supergravity.
</p>
I grew up in different states of India (Darbhanga, Bihar, during 1993-1999; Delhi from 1999 until 2001; and Sonipat, Haryana, from 2001 until 2007) and studied for my bachelor's degree in physics at <a href="https://www.ststephens.edu">St. Stephen's College, Delhi</a> while being a KVPY (highly competitive program funded by the Department of Science and Technology of the Government of India) scholar. In 2010, I received a one-year Erasmus scholarship from the European Union to study for an MS at the University of Paris (now Sorbonne University). I did my master's thesis research on trilayer graphene using ab initio density functional theory calculations using Quantum ESPRESSO. I then moved back to India and completed another master's in astroparticle physics from Bose Institute and St. Xavier's College (2011-2013) and wrote my MSc thesis research on Monte Carlo methods for the path integral approach to quantum field theories (QFTs). The Government of India awarded me the CSIR/UGC fellowship in my final year of MSc, which I had to decline since I moved to the US.
In 2013, I joined the physics department at Syracuse University and obtained my PhD in 2019 on aspects of holography, large N, and lattice supersymmetry. Later that year, I moved to Waterloo, Canada, for my first postdoc and returned to the US for my second postdoc in 2022.
</article>
<!-- Research -->
<article id="research">
<h2 class="major">Research</h2>
</p>
<div class="box">
For Students: If you'd like to work on a research project, please contact me. Until I get a faculty position, I cannot write a reference letter for your future applications. Some postdocs do write letters, I do not.
If you are still interested, I'd love to talk and discuss potential projects. In my research, I am interested in various problems related to lattice gauge theory, tensor networks, qubits and qumodes approach to quantum computing, machine learning such as RBM, matrix models, computational complexity theory, variational algorithms like conventional VQE and d-sparse VQE, Hamiltonian simulation, and quantum chaos in random systems. If you would rather like to work on your own problem/project with me, I would be even
more excited (since this is a positive sign!).
</div>
In my PhD, I focused exclusively on supersymmetric gauge theories as non-perturbative formulations of string theory through gauge/gravity duality especially finite-temperature maximally supersymmetric gauge theories using Monte Carlo (MC) methods to test and understand non-extremal black p-branes in dual supergravity (SUGRA). This numerical approach provides a tool for potential non-trivial checks of the AdS/CFT conjecture and explore away from the classical SUGRA and planar limit.
</p>
During my PhD, I started exploring the tensor network renormalization group
methods to study lower-dimensional gauge theories
and spin models with continuous or discrete symmetries.
Since the tensor network methods are computationally expensive in higher dimensions,
one of my other recent interests is also exploring different algorithms
which will enable us to study a wide range of
statistical models with sufficient accuracy.
A long-term goal is to compute critical exponents in 3d
models by going close to the QFT limit and comparing it to the results
from the well-established conformal bootstrap program and MC method.
Another direction is to study models that are affected by sign problem
in conventional Monte Carlo methods, such as those at finite chemical potential
or with a topological term (complex Euclidean action).
</p>
My focus at the moment is on available/near-term quantum devices and applications of quantum
computation to quantum many-body problems and machine learning applications in physics. My research focuses on continuous variable (CV) approach to quantum computing and information but I also work on qubit based algorithms and simulation using both noisy and fault-tolerant algorithms. In the CV approach, unlike the qubits, the quantum information and unitary transformations are written in terms of bosonic operators which have infinite-dimensional Hilbert space (suitably truncated). I wrote a small review several years ago, please refer to it on arXiv --
<a href="https://arxiv.org/abs/2301.09679"> here </a>. The material in this article is based on lectures given at Rensselaer Polytechnic Institute (RPI) Summer School in June 2022, Hampton University Graduate Studies (HUGS) program and Quantum Computing Bootcamp at Jefferson Lab in June 2023.
</article>
<!-- Nature -->
<article id="photos">
<h2 class="major">Around the World</h2>
<div class="w3-container w3-content w3-padding-20" style="max-width:900px" id="photos">
<span class="image main"><img src="gallery/Goa.jpg"/></span>
<figure>
<figcaption>Sinquerim Beach, Goa, India</figcaption>
</figure>
<span class="image main"><img src="gallery/Japan1.jpg"/></span>
<figure>
<figcaption>Miyajima Island, Japan</figcaption>
</figure>
<span class="image main"><img src="gallery/Greece1.jpg"/></span>
<figure>
<figcaption>Athens, Greece</figcaption>
</figure>
<span class="image main"><img src="gallery/jaco.jpeg"/></span>
<figure>
<figcaption>Jaco, Costa Rica</figcaption>
</figure>
<span class="image main"><img src="gallery/santo.jpg"/></span>
<figure>
<figcaption>Santorini, Greece</figcaption>
</figure>
<span class="image main"><img src="gallery/porto.jpeg"/></span>
<figure>
<figcaption>Porto, Portugal</figcaption>
</figure>
<span class="image main"><img src="gallery/chicago.jpeg"/></span>
<figure>
<figcaption>Chicago, USA</figcaption>
</figure>
<span class="image main"><img src="gallery/dublin.jpeg"/></span>
<figure>
<figcaption>Dublin, Ireland</figcaption>
</figure>
<span class="image main"><img src="gallery/mbay.jpeg"/></span>
<figure>
<figcaption>Maracas Bay, Trinidad and Tobago</figcaption>
</figure>
<span class="image main"><img src="gallery/mal.jpeg"/></span>
<figure>
<figcaption>Maldives</figcaption>
</figure>
<span class="image main"><img src="gallery/NYC1.jpg"/></span>
<figure>
<figcaption>New York City, USA</figcaption>
</figure>
<span class="image main"><img src="gallery/Prague.jpg"/></span>
<figure>
<figcaption>Prague, Czech Republic</figcaption>
</figure>
<span class="image main"><img src="gallery/Lagos1.jpg"/></span>
<figure>
<figcaption>Lagos, Portugal</figcaption>
</figure>
<span class="image main"><img src="gallery/Boulder.jpg"/></span>
<figure>
<figcaption>Boulder, USA</figcaption>
</figure>
<span class="image main"><img src="gallery/NYS.jpg"/></span>
<figure>
<figcaption>Whiteface Mountains, USA</figcaption>
</figure>
</article>
<!-- Notes -->
<article id="notes">
<h2 class="major">Notes and Learning Resources</h2>
<div class="w3-container w3-content w3-padding-20" style="max-width:900px" id="notes">
<ul>
<li> Notes on path integral approach to quantum mechanics due to Dirac/Feynman (<a href="notes/QMPI_Notes.pdf">read here, May 2013</a>)</li>
<li> Short introduction to large N limit of gauge theories (<a href="notes/largeN.pdf">read here, November 2017</a>)</li>
<li> Tensor networks, Entanglement, and Holography (<a href="notes/x.pdf"> To appear in few years! </a>)</li>
<li> Introduction to Quantum Computing (<a href="https://arxiv.org/abs/2301.09679"> Check on arXiv </a>)</li>
<li> Short review on holographic matrix models + fuzzy spheres (<a href="notes/mm_notes.pdf">read here, December 2018</a>)</li>
<li> Some scratch notes on Machine Learning (<a href="notes/v0_ML.pdf">read here</a>)</li>
<li> Some notes on topological field theory (TFT) (<a href="notes/tft_report.pdf">read here, April 2015</a>)</li>
<li> A brief review of lattice supersymmetry (<a href="notes/F2014_rep.pdf">read here, December 2014</a>)</li>
<li> Note on SUSY quantum mechanics (<a href="notes/susy_qm.pdf">read here, August 2014</a>)</li>
<li> Short note on ABJM integrability and 3d SYM (<a href="notes/notes_SGT.pdf">read here, September 2019</a>)</li>
<li> Compilation of important toy models in Physics (<a href="notes/physics_mod.pdf">read here, August 2019</a>)</li>
<li> Tensor network lectures at RPI Summer School (using Python) (<a href="notes/notes_rpi.pdf">read here, June 2020</a>)</li>
<li> Some worked out QFT problems in five parts from back in 2014-2015 (<a href="notes/last_qft_set.pdf">1, </a>
<a href="notes/set1.pdf"> 2, </a> <a href="notes/set2.pdf"> 3, </a> <a href="notes/set3.pdf"> 4, </a>
<a href="notes/set4.pdf"> 5</a>, <a href="notes/QM_QFT.pdf"> 6</a>) </li>
<li> Textbook by Polyakov on gauge fields and strings (<a href="gallery/Polyakov_GFS.pdf"> PDF here</a>)</li>
<li> Textbook by Baxter on exactly solvable models (<a href="gallery/Baxter82.pdf"> PDF here</a>)</li>
<li> Aspects of Symmetry by Coleman (<a href="gallery/AOS_Coleman.pdf"> PDF here</a>)</li>
<li> About 150+ advanced Physics e-books available on my GitHub. See README for details. (<a href="https://github.com/rgjha/PhysicsBooks">Click this link</a>)</li>
</ul>
</article>
<!-- Talks -->
<article id="talks">
<h2 class="major">Talks </h2>
<h4 class="minor"> (see CV for detailed description and PDFs) </h4>
<ol>
<li> State preparation and operator growth of SYK model on IBM quantum computer (November 17, 2024) - Tensor Network 2024 workshop, Ishikawa, Japan [Online]
<li> Thermal state preparation and dynamics of random all-to-all fermionic model (July 17, 2024) - Talk at Massachusetts Institute of Technology (MIT), C2QA meeting, Boston, USA
<li> Introduction to tensor networks (29-30 April, 2 May 2024) - University of Pretoria, South Africa
<li> Quantum computing for quantum many-body systems (17 April, 2024) - William & Mary, VA, USA
<li> Approaches to universal quantum computing for spin and gauge models (16 April, 2024) - University of Iowa
<li> Random dense Hamiltonians on current noisy quantum computers (28 March, 2024) - University of Maryland
<li> Extracting some Physics with IBM's 127-qubit quantum processor (13 March, 2024) - Jefferson Lab
<li> Real-time dynamics of SYK model on a noisy quantum computer (05 March, 2024) - Workshop on 'Toward quantum simulation of gauge/gravity duality and
lattice gauge theory', Queen Mary University of London (Online)
(<a href="talks/QML_050324.pdf">PDF</a>)
<li> SYK model on a noisy quantum computer (06 February, 2024) - Indian Institute of Science (IISc), Bangalore, India
(<a href="talks/IISc060224.pdf">PDF</a>)
<li> Quantum Computation of the O(3) model using qumodes (02 August, 2023) - Lattice 2023, Fermilab, USA
<li> Computation with Quantum Mechanics (June 20, 2023) - Set of two lectures at Quantum Computation Bootcamp, Jefferson Lab, USA
<li> Can quantum computation improve our understanding of quantum fields? (June 7, 2023) - Set of two lectures at HUGS 2023 Summer School, Jefferson Lab, USA
<li> Non-linear sigma models using quantum computation (May 30, 2023) at C2QA Meeting, New York City, USA
<li> Introduction to Quantum Computing methods in Physics (April 27, 2023) at Tata Institute, Mumbai, India
(Online)
(<a href="talks/TIFR.pdf">PDF</a>)
<li> Aspects of Classical and Quantum Computing of Quantum Many-Body Systems (February 10, 2023) at Ashoka University (Online)
(<a href="talks/Ashoka_100223.pdf">PDF</a>)
<li> Classical computation using tensor networks and quantum computation with qubits and qumodes (November 14, 2022) at Jefferson Lab, USA
<li> Application of tensor methods to real-space renormalization and real-time study of field theories (October 31, 2022) at Brookhaven National Lab, USA (Online)
<li> New tools for old problems in spin and gauge models on the lattice (October 12, 2022) at IIT Hyderabad, India (Online)
<li> Some old problems on the lattice using tensors (August 26, 2022) at NUMSTRINGS 2022 conference at ICTS, India
<li> Introduction to Quantum Computation using QISKIT (June 21 and 22, 2022) at Rensselaer Polytechnic Institute, Troy, USA (Online) </li>
<li> New approach to continuous spin models in two and three dimensions (May 17, 2022) at APTCP, Pohang, South Korea (Online) </li>
<li> Holography with large matrices on the lattice (March 24, 2022) at UNAM, Mexico City, Mexico </li>
<li> Large N matrix models using Monte Carlo and Bootstrap (February 22, 2022) at University of Surrey, UK (Online) </li>
<li> Introduction to tensor networks and spin systems (January 11, 2022) at Azim Premji University, Bengaluru, India (Online) </li>
<li>
Tensor networks and spin models (December 7, 2021) - at Indian Institute of Science Education and Research (IISER), Mohali, India (Online)
(<a href="talks/IISERM_071221.pdf">PDF</a>)
</li>
<li> Real-space tensor renormalization for spin models in three dimensions - November 19, 2021 at Perimeter Institute </li>
<li>
Solving matrix models at large and finite N (June 28 and 29, 2021) - Two lectures for Summer School 2021 at Rensselaer Polytechnic Institute, USA (Online due to COVID-19 pandemic)
(<a href="talks/RPI_2021_Lec1_2.pdf">PDF</a>)
</li>
<li> Holographic gauge theories on the lattice - June 23, 2021 at Dublin Institute for Advanced Studies, Dublin, Ireland (Online via Zoom due to COVID-19 pandemic) (<a href="talks/DIAS_230621.pdf">PDF</a>) </li>
<li> Old and new methods for new and old problems in Physics - March 8, 2021 at Indian Institute of Technology (IIT) Madras (Online via Zoom due to COVID-19 pandemic) (<a href="talks/Collo_IITM.pdf">PDF</a>) </li>
<li> Probing holographic dualities with lattice supersymmetric Yang-Mills theories - February 25, 2021 at Massachusetts Institute of Technology (Online via Zoom due to COVID-19 pandemic) (<a href="talks/MIT_v2.pdf">PDF</a>) (<a href="http://y2u.be/fO8A18uwYIM">YouTube</a>) </li>
<li> New tool for old problems — Tensor network approach to spin models and gauge theories - October 14, 2020 at University of Liverpool, UK (Online via Zoom due to COVID-19 pandemic) (<a href="talks/Seminar_v2.pdf">PDF</a>)</li>
<li> Tensor Networks: Algorithm & Applications — June 10 and 11, 2020 – Two lectures [1.5 hours each] for CyberTraining Summer School 2020 at Rensselaer Polytechnic Institute, USA (Online due to COVID-19 pandemic) (<a href="talks/cs2020.pdf">PDF</a>) </li>
<li> Holographic aspects of supersymmetric gauge theories – October 4, 2019 - Perimeter Institute </li>
<li> Numerical Approaches to Holography — August 28, 2019 - Seminar at Ashoka University, Sonipat, India (<a href="talks/Talk_v1.pdf">PDF</a>) </li>
<li> Numerical Approaches to Holography — August 08, 2019 - Seminar at Indian Institute of Science Education and Research (IISER), Mohali, India </li>
<li> Holography, large $N$, and supersymmetry on the lattice — April 02, 2019 - Ph.D. thesis defense (<a href="talks/talk_v1_phd.pdf">PDF</a>) </li>
<li> Fundamentals of Quantum Entropy — March 29, 2019 </li>
<li> Holographic dualities and tensor renormalization group study of gauge theories — March 11, 2019 - Interdisciplinary Quantum Fields and Strings + Tensor Networks Initiative invited talk at Perimeter Institute (<a href="talks/PI_2019.pdf">PDF</a>) (<a href="https://www.perimeterinstitute.ca/videos/interdisciplinary-seminar-holographic-dualities-and-tensor-renormalization-group-study-gauge">PIRSA</a>) </li>
<li> Matrix Models — December 7, 2018 - Theory HEP Group talk at Syracuse University </li>
<li> Lattice gravity and scalar fields — July 23, 2018 at Annual Lattice Conference 2018, Michigan, USA (<a href="talks/edt.pdf">PDF</a>) </li>
<li> Supersymmetry breaking and gauge/gravity duality on the lattice — April 06, 2018 - Lattice beyond Standard Model 2018 at UC Boulder, Colorado (<a href="talks/lbsm18_jha.pdf">PDF</a>) </li>
<li> Large $N$ gauge theories — March 09, 2018 - Theory HEP Group talk at Syracuse University </li>
<li> Recent results from lattice supersymmetry in $2 \le d < 4$ dimensions — January 31, 2018 - NUMSTRINGS I conference at ICTS, Bangalore
(<a href="talks/talk_ICTS_v1.pdf">PDF</a>) (<a href="https://www.youtube.com/watch?v=Zey6DAEiw0c">YouTube</a>) </li>
<li> Testing gauge/gravity duality using lattice simulations — July 22, 2017 at Annual Lattice Conference 2017 , Granada, Spain (<a href="talks/lattice2017_rgjha.pdf">PDF</a>) </li>
<li> Testing holography through lattice simulations — April 04, 2017 at Quantum Gravity, String theory, and Holography conference at Yukawa Institute for Theoretical Physics, Kyoto, Japan (<a href="talks/kyoto_v1.pdf">PDF</a>) </li>
<li> Maximally supersymmetric Yang-Mills and dual gravitational theories — October 07, 2016 - Theory HEP Group talk at Syracuse University </li>
<li> Supersymmetry on the lattice — April 17, 2016 at the APS 2016 Meeting, Salt Lake City, Utah, USA (<a href="talks/aps_april.pdf">PDF</a>)</li>
<li> Lattice studies of $ \mathcal{N} = (8,8)$ SYM - April 08, 2016 — Theory HEP Group talk at Syracuse University </li>
</article>
<!-- ML-->
<article id="ds_stuff">
<h2 class="major">ML Stuff</h2>
<ol>
I am also interested in machine learning (and data analytics) and my current research is exploring a question regarding application of ML to problems in quantum physics. Here is a small collection of non-Physics sample
projects I have done.
<font size="+0">
<ol>
<li class="nav-item"><a class="nav-link active" data-toggle="tab" href="https://www.github.com/rgjha" role="tablist" > <font size="+2"> EDA and Data Visualization </font> <i class="fa fa-bar-chart" aria-hidden="true"></i></a>
</p>
Exploratory Data Analysis (EDA) is the process of retrieving, processing, and 'knowing' the data.
Here, I present few examples from the projects I have done. For example, the first two figures are taken from the analysis of my own flight data (i.e., flight routes taken since 2009). It is obvious that I have spent major part of these 14 years traveling between India and where I did PhD (New York) and postdoc (Toronto). Unfortunately, I have not been to the southern hemisphere but crossed the Date Line several times. In the next figure, we see about 1200 years of data predicting the day when the cherry will blossom in Kyoto, Japan (neglecting effects of temperature etc.). This project was inspired by a paper published which studied the effect of global warming on this annual event. The next figure shows the histogram for the comparison of various statistical measures such -- Accuracy, F1 Score, Precision, Recall (attributes from the confusion matrix) for different algorithms. I mostly use Matplotlib, Plotly, and Seaborn for data visualization. I have carried out these EDA mostly on Jupyter notebooks, Google Colab, or on Google Cloud Platform (GCP)
</font>
</p>
<ul>
<li>
<img src="gallery/map0.png" style="max-width:270px" alt="Image" class="center"/> <img src="gallery/tmap.pdf" style="max-width:350px" alt="Image" class="center"/>
</li>
<li>
<img src="gallery/cb.png" style="max-width:450px" alt="Image" class="center"/>
</li>
<li>
<img src="gallery/compare.png" style="max-width:450px" alt="Image" class="center"/>
<a href="#"> </a>
</ul>
</li>
</p>
<li class="nav-item"><a class="nav-link" data-toggle="tab" href="https://www.github.com/rgjha" role="tablist" > <font size="+2"> Natural Language Processing (NLP) </font> <i class="fa fa-language" aria-hidden="false"></i></a>
</p>
<font size="+0">
NLP is the field of data science/machine learning related to the analysis of texts, speech and drawing meaningful conclusions from it. In fact, advanced NLP models based on AGI (Artificial General Intelligence) can also suggest texts and answer questions based on trained models. This is why with Chat-GPT, the interest in LLM (large language models) have considerably increased. Below we see a snapshot of the project involving the determination of whether a message is spam or not and glimpse of processing of such written texts.
The packages I have used for NLP problems are the NL tool-kit (NLTK) (it is a leading platform for building Python
programs to work with human language data) and spaCy. In the first figure, we see one step of how we clean the data
through various columns based on removing punctuations, stop words, stemming/lemmatization, and tokenization.
In the second figure, we see a word cloud of the papers written in Quantum Physics during the 1990s obtained from the dataset from arXiv preprint server, a short project I did to bring out the physicist in me!
</p>
<ul>
<li>
<img src="gallery/spam.png" style="max-width:650px" alt="Image" class="center"/>
<a href="#"> </a>
</li>
<li>
<img src="gallery/phy1.png" style="max-width:500px" alt="Image" class="center"/>
<a href="#"> </a>
</li>
</ul>
</font>
</li>
</p>
<li class="nav-item"><a class="nav-link" data-toggle="tab" href="https://www.github.com/rgjha" role="tablist" > <font size="+2"> Unsupervised and Deep Learning </font> <i class="fa fa-newspaper-o" aria-hidden="true"></i></a>
</p>
<font size="+0">
One of the most popular unsupervised learning algorithms is k-means clustering. The goal of k-means is
to group data points into distinct non-overlapping subgroups. This is very useful for problems like
customer segmentation. In the first figure, we show an example based on k-means algorithm with five clusters
for a problem related to how people (customers) in some mall spend their money. The choice of number of clusters
is crucial since it can lead to overfitting (high variance) for large 'k' and will underfit for small 'k'.
A method for making a good choice is the elbow method.
In the second figure, we show one of the simplest CNN architecture known as 'LeNet' network (deep learning).
It consists of repeating convolution and pooling layers before the fully dense layer and logit output.
This can be used to identify a hand-drawn "8" [as shown] with good accuracy. In the last figure, we
classify the single-channel (no RGB) fashion dataset image with deep learning models in PyTorch.
<ul>
<li>
<img src="gallery/kmeans1.png" style="max-width:700px" alt="Image" class="center"/>
<a href="#"> </a>
</li>
<li>
<img src="gallery/lenet.png" style="max-width:700px" alt="Image" class="center"/>
<a href="#"> </a>
</li>
<li>
<img src="gallery/fashion.png" style="max-width:700px" alt="Image" class="center"/>
<a href="#"> </a>
</li>
</font>
</p>
</article>
<!-- Publications -->
<article id="publications">
<h2 class="major">Publications</h2>
<i> Last updated: 2024, December 03. Please check <a href="https://inspirehep.net/authors/1597759">iNSPIRE-HEP</a> for the most up to date publication list. To download list of papers as a single file PDF,
click <a href="gallery/list_pubs.pdf">PDF</a> here</a></i>
<p style="margin-bottom:1cm;"> </p>
<ol>
<li> On Ising model in magnetic field on the lattice <a href="https://arxiv.org/abs/2504.18744"> (arXiv) </a> </li>
<li> Real-Time Scattering in Ising Field Theory using Matrix Product States <a href="https://arxiv.org/abs/2411.13645"> (arXiv) </a> </li>
<li> Quantum computation of SU(2) lattice gauge theory with continuous variables <a href="https://arxiv.org/abs/2410.14580"> (arXiv) </a> </li>
<li> Sparsity dependence of Krylov state complexity in the SYK model <a href="https://arxiv.org/abs/2407.20569"> (arXiv) </a> </li>
<li> Thermal state preparation of the SYK model using a variational quantum algorithm <a href="https://arxiv.org/abs/2406.15545"> (arXiv) </a> </li>
<li> SU(2) principal chiral model with tensor renormalization group on a cubic lattice <a href="https://arxiv.org/abs/2406.10081"> (arXiv) </a> </li>
<li> Phase diagram of generalized XY model using tensor renormalization group <a href="https://arxiv.org/abs/2404.17504"> (arXiv) </a> </li>
<li> Hamiltonian simulation of minimal holographic sparsified SYK model <a href="https://arxiv.org/abs/2404.14784"> (arXiv) </a> </li>
<li> Tensor renormalization group study of 3D principal chiral model <a href="https://arxiv.org/abs/2312.11649"> (arXiv) </a> </li>
<li> Phase diagram of two-dimensional $SU(N)$ super-Yang--Mills theory with four supercharges <a href="https://arxiv.org/abs/2312.04980"> (arXiv) </a> </li>
<li> Sachdev-Ye-Kitaev model on a noisy quantum computer <a href="https://arxiv.org/abs/2311.17991"> (arXiv) </a> </li>
<li> Continuous variable quantum computation of the O(3) model in 1+1 dimensions <a href="https://arxiv.org/abs/2310.12512"> (arXiv) </a> </li>
<li> Toward quantum computations of the O(3) model using qumodes <a href="https://arxiv.org/abs/2308.06946"> (arXiv) </a> </li>
<li> GPU-Acceleration of Tensor Renormalization with PyTorch using CUDA <a href="https://arxiv.org/abs/2306.00358"> (arXiv) </a> </li>
<li> Notes on Quantum Computation and Information <a href="https://arxiv.org/abs/2301.09679"> (arXiv) </a> </li>
<li> Supersymmetric Wilson loops on the lattice in the large $N$ limit <a href="https://link.springer.com/article/10.1140/epjs/s11734-023-00768-x"> (Springer) </a> (Published in EPJ-ST) </li>
<li> Non-perturbative phase structure of the bosonic BMN matrix model <a href="https://arxiv.org/abs/2201.08791"> (arXiv) </a> </li>
<li> Thermal phase structure of dimensionally reduced super-Yang--Mills <a href="https://arxiv.org/abs/2201.03097"> (arXiv) </a> </li>
<li> Tensor renormalization of three-dimensional Potts model <a href="https://arxiv.org/abs/2201.01789"> (arXiv) </a> </li>
<li> Introduction to Monte Carlo for Matrix Models <a href="https://arxiv.org/abs/2111.02410"> (arXiv) </a> </li>
<li> Large-$N$ limit of two-dimensional Yang--Mills theory with four supercharges <a href="https://arxiv.org/abs/2109.01001"> (arXiv) </a> </li>
<li> Tensor renormalization group study of the 3d O(2) model <a href="https://arxiv.org/abs/2105.08066"> (arXiv) </a> </li>
<li> Three-dimensional super-Yang–Mills theory on the lattice and dual black branes <a href="https://arxiv.org/abs/2010.00026"> (arXiv) </a> </li>
<li> Positive geometries for all scalar theories from twisted intersection theory <a href="https://arxiv.org/abs/2006.15359"> (arXiv) </a> </li>
<li> Critical analysis of two-dimensional classical XY model using tensor renormalization group <a href="https://arxiv.org/abs/2004.06314"> (arXiv) </a> </li>
<li> Thermal phase structure of a supersymmetric matrix model <a href="https://arxiv.org/abs/2003.01298"> (arXiv) </a> </li>
<li> Finite $N$ unitary matrix models <a href="https://arxiv.org/abs/2003.00341"> (arXiv) </a> </li>
<li> Tensor renormalization group study of the non-Abelian Higgs model in two dimensions <a href="https://arxiv.org/abs/1901.11443"> (arXiv) </a> </li>
<li> Lattice quantum gravity with scalar fields <a href="https://arxiv.org/abs/1810.09946"> (arXiv) </a> </li>
<li> The properties of D1-branes from lattice super Yang–Mills theory using gauge/gravity duality <a href="https://arxiv.org/abs/1809.00797"> (arXiv) </a> </li>
<li> On the removal of the trace mode in lattice $\mathcal{N} = 4$ super Yang-Mills theory <a href="https://arxiv.org/abs/1808.04735"> (arXiv) </a> </li>
<li> Nonperturbative study of dynamical SUSY breaking in $\mathcal{N} = (2,2)$ Yang-Mills theory <a href="https://arxiv.org/abs/1801.00012"> (arXiv) </a> </li>
<li> Truncation of lattice $\mathcal{N} = 4$ super Yang-Mills </li>
<li> Testing the holographic principle using lattice simulations <a href="https://arxiv.org/abs/1710.06398"> (arXiv) </a> </li>
<li> Testing holography using the lattice with super-Yang-Mills theory on a 2-torus <a href="https://arxiv.org/abs/1709.07025"> (arXiv) </a> </li>
</ol>
<u> Number of papers ('Y' denotes the year), number of citations per paper, and number of author(s) per paper </u>
<li>
<img src="num.pdf" style="max-width:450px" alt="Image" class="center"/>
<a href="#"> </a>
<li>
<img src="cit.pdf" style="max-width:650px" alt="Image" class="center"/>
<a href="#"> </a>
<li>
<img src="author.pdf" style="max-width:650px" alt="Image" class="center"/>
<a href="#"> </a>
<li>
<img src="month-wise.pdf" style="max-width:850px" alt="Image" class="center"/>
<a href="#"> </a>
<div class="w3-row w3-padding-100">
<div class="w3-third">
</div>
</div>
</div>
</div>
</article>
<!-- Footer -->
<footer id="footer">
<!-- <p class="copyright">© Raghav Govind Jha </p> -->
</footer>
</div>
<!-- BG -->
<div id="bg"></div>
<!-- Scripts -->
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/browser.min.js"></script>
<script src="assets/js/breakpoints.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/browser.min.js"></script>
<script src="assets/js/breakpoints.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
</body>
</html>