-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
157 lines (138 loc) · 5.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf8
from __future__ import print_function
import numpy as np
import argparse
import time
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR
from dataset import MNIST, FashionMNIST, MNISTplusFashion
from model import Multitask
'''
F: 0.9359, 0.9374, 0.9363, 0.9394
M: 0.9934, 0.9953, 0.996, 0.993
M+F: 0.9614, 0.9658
M+F -> M: 0.9947, 0.9956, 0.9928
M+F -> F: 0.9261, 0.9373, 0.9383, 0.942
'''
parser = argparse.ArgumentParser(description='PyTorch CNN Sentence Classification')
# training configs
parser.add_argument('--optimizer', type=str, default='Adam',
help='training optimizer (default: Adam)')
parser.add_argument('--batch-size', type=int, default=100,
help='input batch size for training (default: 100)')
parser.add_argument('--test-batch-size', type=int, default=100,
help='input batch size for testing (default: 100)')
parser.add_argument('--n-class', type=int, default=10,
help='number of class (default: 10)')
parser.add_argument('--epochs', type=int, default=50,
help='number of epochs to train (default: 50)')
parser.add_argument('--lr', type=float, default=1e-3,
help='learning rate (default: 0.001)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--w-decay', type=float, default=0.,
help='L2 norm (default: 0)')
parser.add_argument('--log-interval', type=int, default=500,
help='how many batches to wait before logging training status')
parser.add_argument('--pre-trained', type=int, default=0,
help='using pre-trained model or not (default: 0)')
# data
parser.add_argument('--dataset', type=str, default='M+F',
help='current dataset')
# device
parser.add_argument('--cuda', type=int, default=1,
help='using CUDA training')
parser.add_argument('--multi-gpu', action='store_true', default=False,
help='using multi-gpu')
args = parser.parse_args()
args.cuda = args.cuda and torch.cuda.is_available()
params = "{}-{}-batch{}-epoch{}-lr{}-momentum{}-wdecay{}".format(args.dataset, args.optimizer, args.batch_size, args.epochs, args.lr, args.momentum, args.w_decay)
print('args: {}\nparams: {}'.format(args, params))
# define result file & model file
result_dir = 'result'
model_dir = 'model'
for dir in [result_dir, model_dir]:
if not os.path.exists(dir):
os.makedirs(dir)
# load data
train_data = MNISTplusFashion(phase='train')
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=4)
val_data = MNISTplusFashion(phase='val')
val_loader = DataLoader(val_data, batch_size=args.test_batch_size, shuffle=False, num_workers=4)
# get model
if args.pre_trained:
model = torch.load(os.path.join(model_dir, params))
accs = np.load(os.path.join(result_dir, params)+'.npy')
print("Using cache")
else:
model = Multitask(n_class=train_data.n_class)
accs = np.zeros(args.epochs)
# use GPU
if args.cuda:
ts = time.time()
model = model.cuda()
if args.multi_gpu:
num_gpu = list(range(torch.cuda.device_count()))
model = nn.DataParallel(model, device_ids=num_gpu)
print("Finish cuda loading, time elapsed {}".format(time.time() - ts))
# define loss & optimizer
if args.optimizer == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.w_decay)
elif args.optimizer == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.w_decay)
elif args.optimizer == 'RMSprop':
optimizer = torch.optim.RMSprop(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.w_decay)
scheduler = MultiStepLR(optimizer, milestones=[25], gamma=0.01)
criterion = nn.BCEWithLogitsLoss()
def train(epoch):
model.train()
for idx, batch in enumerate(train_loader):
optimizer.zero_grad()
if args.cuda:
batch['X'] = batch['X'].cuda()
batch['Y'] = batch['Y'].cuda()
inputs, target = Variable(batch['X']), Variable(batch['Y'])
output = model(inputs)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if idx % args.log_interval == 0:
print("Training epoch {}, idx {}, loss {}".format(epoch, idx, loss.data[0]))
def val(epoch):
model.eval()
val_loss = 0.
correct = 0
for idx, batch in enumerate(val_loader):
if args.cuda:
batch['X'] = batch['X'].cuda()
batch['Y'] = batch['Y'].cuda()
inputs, target = Variable(batch['X']), Variable(batch['Y'])
output = model(inputs)
val_loss += criterion(output, target).data[0]
pred = np.argmax(output.data.cpu().numpy(), axis=1)
target = np.argmax(target.data.cpu().numpy(), axis=1)
correct += (pred == target).sum()
val_loss /= idx
acc = correct / len(val_data)
accs[epoch] = acc
np.save(os.path.join(result_dir, params), accs)
if acc >= np.max(accs):
model_name = os.path.join(model_dir, params)
torch.save(model, model_name)
print("Validating epoch {}, val_loss {}, acc {:.4f}({}/{})".format(epoch, val_loss, acc, correct, len(val_data)))
if __name__ == "__main__":
val(0) # test initial performance before training
# train MNIST + fashionMNIST together
print("Strat training")
for epoch in range(args.epochs):
scheduler.step()
ts = time.time()
train(epoch)
val(epoch)
print("Finish epoch {}, time elapsed {}".format(epoch, time.time() - ts))
print("Best val acc {}".format(np.max(accs)))