-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmario_reach_sampling.py
764 lines (673 loc) · 29.2 KB
/
mario_reach_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
from schedulers import PrismInterface, StormInterface
from MarioTD import MarioTD
from aalpy.utils import load_automaton_from_file
import gym_super_mario_bros
import os
import pickle
import resource
import configparser
import datetime
import torch
import numpy as np
from math import sqrt, log
import time
from pathlib import Path
import json
import sys
from gym.wrappers import FrameStack, GrayScaleObservation, TransformObservation
from wrappers import ResizeObservation, SkipFrame
from nes_py.wrappers import JoypadSpace
from gym_super_mario_bros import actions
import random
from agent import Mario
from collections import defaultdict
from schedulers import extract_coords
from scipy.stats import fisher_exact
max_rec = 0x20000
action_dim = 2
from neuron_coverage import CoverageInfo
def print_current_coverage_infos(all_coverage_infos):
combined_infos = all_coverage_infos[0]
for current_info in all_coverage_infos[1:]:
combined_infos = combined_infos.combine(current_info)
combined_infos.print_coverage()
# May segfault without this line. 0x100 is a guess at the size of each stack frame.
resource.setrlimit(resource.RLIMIT_STACK, [0x100 * max_rec, resource.RLIM_INFINITY])
sys.setrecursionlimit(max_rec)
from enum import Enum
class Verdict(Enum):
PASS = 1
FAIL = 2
INCONC = 3
def save(x, path):
with open(path, 'wb') as handle:
pickle.dump(x, handle, protocol=pickle.HIGHEST_PROTOCOL)
def load(file_name):
if os.path.exists(file_name):
with open(file_name, 'rb') as handle:
return pickle.load(handle)
else:
return None
def setup_scheduler(model_name,rev_input_dict,target):
#prism_int_name = model_file_name.replace(".dot", f"p_int_{target}.pickle")
#interface = load(prism_int_name)
#model_file_name = "storm/" + model_name + ".dot"
# if mdp is None:
# model = load_automaton_from_file(model_file_name, "mdp")
# else:
# model = mdp
# print("Loaded MDP")
interface = StormInterface(target, model_name,rev_input_dict)
print("Scheduler initialized")
scheduler = interface.scheduler
return scheduler
def setup_reachability(model_name,rev_input_dict,target,stage,params):
scheduler = setup_scheduler(model_name,rev_input_dict,target)
mario = setup_mario(params)
return mario, scheduler
def setup_mario(params):
stage = params["SETUP"]["STAGE"]
style = params["SETUP"]["STYLE"]
env = gym_super_mario_bros.make(f"SuperMarioBros-{stage}-{style}")
# due to an episode limit, make in the above line returns TimeLimit environment,
# so to get the mario environment directly, we need to unwrap
unwrapped_env = env.env
# Limit the action-space
action_space = {
'SIMPLE_MOVEMENT': JoypadSpace(env, actions.SIMPLE_MOVEMENT),
'COMPLEX_MOVEMENT': JoypadSpace(env, actions.COMPLEX_MOVEMENT),
'RIGHT_ONLY': JoypadSpace(env, actions.RIGHT_ONLY),
'FAST_RIGHT': JoypadSpace(env, [['right','B'], ['right', 'A','B']])
}
env = action_space.get("FAST_RIGHT")
# Apply Wrappers to environment
env = SkipFrame(env, skip_min=3, skip_max=5)
env = GrayScaleObservation(env, keep_dim=False)
env = ResizeObservation(env, shape=84)
env = TransformObservation(env, f=lambda x: x / 255.)
env = FrameStack(env, num_stack=4)
rev_act_map = {"right":0, "jump":1}
mario = MarioTD(env,rev_act_map)
return mario
def setup_test_schedulers(params, rev_input_dict,x_positions):
def k_closest_label_coord(all_label_coords, x_pos, k=3):
min_diff = 10**10
min_oc = None
labels_with_dists = [(o,(x,y),(x-x_pos)) for (o,(x,y)) in all_label_coords if x-x_pos > 0] # only want to go beyond
labels_with_dists.sort(key = lambda x : x[2])
return [(o,c) for (o,c,d) in labels_with_dists[:k]]
def closest_label_coord(all_label_coords, x_pos):
min_diff = 10**10
min_oc = None
for (o,c) in all_label_coords:
x,y = c
if abs(x-x_pos) < min_diff:
min_diff = abs(x-x_pos)
min_oc = (o,c)
return min_oc
model_name = params["TESTING"]["MODEL"]
model_path = params["TESTING"]["MODEL_PATH"]
lab_file_name = f"{model_path}{model_name}.lab"
all_label_coords = get_all_positions(lab_file_name)
schedulers = dict()
for x in x_positions:
#closest = closest_label_coord(all_label_coords,x)
closest = k_closest_label_coord(all_label_coords, x, k=1)[0]
target, coord = closest
scheduler = setup_scheduler(model_name,rev_input_dict,target)
schedulers[x] = scheduler
#model = load_automaton_from_file(model_file_name, "mdp")
#all_labels = [s.output.replace("__game_over","").replace("__win","") for s in model.states]
#all_labels.remove("Init")
#all_label_coords = [(o,extract_coords(o)) for o in all_labels]
return schedulers
def setup_suts(params):
suts_list = []
suts_names = tuple(json.loads(params["TESTING"]["SUTs"]))
print(suts_names)
for sut_name in suts_names:
save_dir = Path('checkpoints') / datetime.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
import time
time.sleep(2)
save_dir.mkdir(parents=True,exist_ok=True)
checkpoint_path = sut_name
checkpoint = Path(checkpoint_path)
sut = Mario(state_dim=(4, 84, 84), action_dim=action_dim, save_dir=save_dir, params=params,
checkpoint=checkpoint,load_only_conv=False,disable_cuda=True)
suts_list.append(sut)
return suts_names,tuple(suts_list)
def run_test_prefix(scheduler,mario_td,x_goal):
while True:
action = scheduler.get_input()
if action is None:
#print(f"Sampling a random action in {obs}")
action = random.choice(["right","jump"])
rl_state,obs = mario_td.step(action,render=False,return_state=True)
if "game_over" in obs or "win" in obs:
return False,rl_state
x,y = extract_coords(obs)
if x >= x_goal:
break
reached_state = scheduler.step_to(action, obs)
if reached_state is None:
scheduler.step_to_closest(action,obs)
return True,rl_state
def run_single_test(scheduler,x_goal, sut, mario_td,test_len):
scheduler.reset()
mario_td.reset()
succ, rl_state = run_test_prefix(scheduler,mario_td,x_goal)
# while True:
# action = scheduler.get_input()
# if action is None:
# #print(f"Sampling a random action in {obs}")
# action = random.choice(["right","jump"])
# rl_state,obs = mario_td.step(action,render=False,return_state=True)
# if "game_over" in obs:
# return Verdict.INCONC
# x,y = extract_coords(obs)
# if x >= x_goal:
# break
# reached_state = scheduler.step_to(action, obs)
# if reached_state is None:
# scheduler.step_to_closest(action,obs)
if not succ:
return Verdict.INCONC
rl_state = torch.from_numpy(np.array(rl_state)).float()
for i in range(test_len):
action = sut.act(rl_state,eval_mode=True)
rl_state,obs = mario_td.step(action,reverse=False,render=False,return_state=True)
rl_state = torch.from_numpy(np.array(rl_state)).float()
if "game_over" in obs:
return Verdict.FAIL
if "win" in obs:
break
return Verdict.PASS
def diff_test(f1, n1, f2, n2,eps):
contingency_table = np.array([[f1,n1-f1],[f2,n2-f2]])
res = fisher_exact(contingency_table, alternative='two-sided')
if res[1] < eps:
return True,res
else:
return False
#if abs(f1 / n1 - f2 / n2) > ((sqrt(1 / n1) + sqrt(1 / n2)) * sqrt(0.5 * log(2 / eps))):
# return True
#return False
def repeated_test_from_state(params,x_goal,scheduler,sut_names,suts,mario_td):
max_tries = params.getint("TESTING","MAX_TRIES")
eps = params.getfloat("TESTING","ALPHA")
test_len = params.getint("TESTING","LENGTH")
fails_sut_1 = 0
succ_sut_1 = 0
succ_sut_2 = 0
fails_sut_2 = 0
current_sut_index = 0
for i in range(max_tries):
if i % 20 == 0:
print(f"Try: {i}")
sut = suts[current_sut_index]
verdict = run_single_test(scheduler,x_goal, sut, mario_td,test_len)
if verdict == Verdict.INCONC:
continue
elif verdict == Verdict.PASS:
if current_sut_index == 0:
succ_sut_1 += 1
else:
succ_sut_2 += 1
current_sut_index = (current_sut_index + 1) % 2
else:
if current_sut_index == 0:
fails_sut_1 += 1
else:
fails_sut_2 += 1
current_sut_index = (current_sut_index + 1) % 2
# perform hoeffding test here
n1 = fails_sut_1 + succ_sut_1
n2 = fails_sut_2 + succ_sut_2
diff_res = diff_test(fails_sut_1, n1,fails_sut_2,n2,eps)
if n1 > 0 and n2 > 0 and diff_res:
print("Stopping early")
print(f"{fails_sut_1/n1} vs {fails_sut_2/n2}")
return(i,fails_sut_1,n1,fails_sut_2,n2, diff_res[1])
print("Similarly safe")
#return(i,fails_sut_1,n1,fails_sut_2,n2)
return(max_tries + 1,fails_sut_1,n1,fails_sut_2,n2)
def differential_testing(params,rev_input_dict):
stage = params["SETUP"]["STAGE"]
model_file_name = params["TESTING"]["MODEL"]
x_positions = json.loads(params["TESTING"]["X_POSITIONS"])
print(x_positions)
for x in x_positions:
print(x, type(x))
schedulers = setup_test_schedulers(params,rev_input_dict, x_positions)
mario_td = setup_mario(params)
sut_names,suts = setup_suts(params)
result_dict = dict()
import random
id = random.randint(0,10000)
with open(f"test_result_{stage}_{id}.txt", "w") as fp:
fp.write("Test mode: {params['TESTING']['TESTS']} \n")
fp.write(str(sut_names))
fp.write("\n")
for x in schedulers.keys():
print(f"Going to test for {x}")
start = time.time()
result = repeated_test_from_state(params,x,schedulers[x],sut_names,suts,mario_td)
end = time.time()
fp.write(str(result))
fp.write("\n")
fp.write(f"Time: {end-start}")
fp.write("\n")
fp.flush()
result_dict[x] = result
print(result_dict)
def get_all_positions(lab_file_name):
with open(lab_file_name,"r") as lab_file:
lab_lines = lab_file.readlines()
header = lab_lines[1]
position_labels = filter(lambda x : "pos" in x, header.split(" "))
all_pos = []
for l in position_labels:
x,y = extract_coords(l)
all_pos.append((l,(x,y)))
return all_pos
def determine_targets(params):
if params["TESTING"]["TESTS"].startswith("RANDOM") or params["TESTING"]["TESTS"].startswith("EQUI_DIST"):
nr_tests = int(params["TESTING"]["TESTS"].replace("RANDOM(","").replace("EQUI_DIST(","").replace(")",""))
model_name = params["TESTING"]["MODEL"]
model_path = params["TESTING"]["MODEL_PATH"]
lab_file_name = f"{model_path}{model_name}.lab"
all_positions = get_all_positions(lab_file_name)
all_x_positions = [x for (l,(x,y)) in all_positions]
if params["TESTING"]["TESTS"].startswith("RANDOM"):
return sorted(random.sample(all_x_positions,nr_tests))
else:
max_x_pos = max(all_x_positions)
choices = list(range(1,nr_tests+1))
points = [int(round((c/(nr_tests+1))*max_x_pos)) for c in choices]
return points
elif params["TESTING"]["TESTS"].startswith("FROM_FILE"):
test_file_name = params["TESTING"]["TESTS"].replace("FROM_FILE(","").replace(")","")
with open(test_file_name, "r") as fp:
test_positions_string = fp.readlines()[0]
test_positions = json.loads(test_positions_string)
x_positions = [x for [x,y] in test_positions]
return x_positions
elif params["TESTING"]["TESTS"].startswith("FIXED"):
x_list = params["TESTING"]["TESTS"].replace("FIXED(","").replace(")","")
return json.loads(x_list)
def coverage_test_from_state(params,x_goal,scheduler,sut_names,suts,mario_td,coverage_infos):
max_tries = params.getint("TESTING","MAX_TRIES")
test_len = params.getint("TESTING","LENGTH")
current_sut_index = 0
successful_run = False
action_choices = defaultdict(int)
for i in range(max_tries):
if i % 20 == 0:
print(f"Try: {i}")
scheduler.reset()
mario_td.reset()
succ, rl_state = run_test_prefix(scheduler,mario_td,x_goal)
rl_state = torch.from_numpy(np.array(rl_state)).float()
if succ:
successful_run = True
print(f"Successful cov check at try {i}")
for j in range(len(sut_names)):
sut = suts[j]
name = sut_names[j]
action = sut.act(rl_state,eval_mode=True)
action_choices[action] += 1
imp_value = sut.net.importance_value(rl_state)
cov_info = sut.net.check_coverage(rl_state)
coverage_infos[name] = (coverage_infos[name][0].combine(cov_info),cov_info,imp_value)
break
difference = max(action_choices.values()) / sum(action_choices.values()) if successful_run else 0
return successful_run,difference
def safety_ratios_from_state(params,x_goal,scheduler,sut_names,suts,mario_td):
max_tries = params.getint("TESTING","MAX_TRIES")
test_len = params.getint("TESTING","LENGTH")
nr_tests = params.getint("TESTING","N_TESTS")
safety_results = defaultdict(list)
for current_sut_index,sut_name in enumerate(sut_names):
sut = suts[current_sut_index]
print(f"Testing {sut_name}")
for i in range(max_tries):
if i % 20 == 0:
print(f"Try: {i}")
scheduler.reset()
mario_td.reset()
verdict = run_single_test(scheduler,x_goal, sut, mario_td,test_len)
if verdict == Verdict.INCONC:
continue
else:
safety_results[sut_name].append(verdict)
if len(safety_results[sut_name]) == nr_tests:
break
results = {sut_name : (count_pass(verdicts) / len(verdicts),len(verdicts)) for sut_name, verdicts in safety_results.items()}
return results
def count_pass(verdict_list) :
return len([v for v in verdict_list if v == Verdict.PASS])
def coverage_testing(params,rev_input_dict):
stage = params["SETUP"]["STAGE"]
model_file_name = params["TESTING"]["MODEL"]
x_positions = determine_targets(params)
mario_td = setup_mario(params)
print(x_positions)
for x in x_positions:
print(x, type(x))
schedulers = setup_test_schedulers(params,rev_input_dict, x_positions)
sut_names,suts = setup_suts(params)
result_dict = dict()
coverage_infos = dict()
for sut_name in sut_names:
coverage_infos[sut_name] = (CoverageInfo([]),None,None)
import random
id = random.randint(0,10000)
file_name_suffix = ""
if params["TESTING"]["TESTS"].startswith("RANDOM"):
file_name_suffix = "rand"
elif params["TESTING"]["TESTS"].startswith("EQUI_DIST"):
file_name_suffix = "eqd"
elif "boundary" in params["TESTING"]["TESTS"]:
file_name_suffix = "bp"
with open(f"coverage_result_immediate_safety/test_result_{stage}_{file_name_suffix}_{id}.txt", "w") as fp:
fp.write(str(sut_names))
fp.write("\n")
for x in schedulers.keys():
print(f"Going to test for {x}")
start = time.time()
succ,difference = coverage_test_from_state(params,x,schedulers[x],sut_names,suts,mario_td,coverage_infos)
end = time.time()
fp.write(f"Tested x-coordinate:{x}\n")
for sut_name,cov_info in coverage_infos.items():
agg_info, ind_info, imp_value = cov_info
fp.write(sut_name)
fp.write(":\n")
fp.write(str(agg_info.compute_coverage()))
fp.write("\n")
fp.write(str(ind_info.compute_coverage()))
fp.write("\n")
fp.write(str(imp_value))
fp.write("\n")
fp.write(f"Conclusive:{succ}\n")
fp.write(f"Difference:{difference}")
fp.write("\n")
fp.flush()
result_dict[x] = (succ,difference)
print(result_dict)
def safety_ratio_testing(params,rev_input_dict):
stage = params["SETUP"]["STAGE"]
model_file_name = params["TESTING"]["MODEL"]
x_positions = determine_targets(params)
mario_td = setup_mario(params)
print(x_positions)
for x in x_positions:
print(x, type(x))
schedulers = setup_test_schedulers(params,rev_input_dict, x_positions)
sut_names,suts = setup_suts(params)
result_dict = dict()
import random
id = random.randint(0,10000)
file_name_suffix = ""
if params["TESTING"]["TESTS"].startswith("RANDOM"):
file_name_suffix = "rand"
elif params["TESTING"]["TESTS"].startswith("EQUI_DIST"):
file_name_suffix = "eqd"
elif "boundary" in params["TESTING"]["TESTS"]:
file_name_suffix = "bp"
elif "FIXED" in params["TESTING"]["TESTS"]:
file_name_suffix = params["TESTING"]["TESTS"].replace("[","_").replace("]","_")
with open(f"safety_ratios_500_ep/test_result_{stage}_{file_name_suffix}_{id}.txt", "w") as fp:
fp.write(str(sut_names))
fp.write("\n")
for x in schedulers.keys():
print(f"Going to test for {x}")
start = time.time()
results = safety_ratios_from_state(params,x,schedulers[x],sut_names,suts,mario_td)
end = time.time()
fp.write(f"Tested x-coordinate:{x}\n")
for sut_name,(ratio,n_conc_tests) in results.items():
fp.write(sut_name)
fp.write(":\n")
fp.write(f"Safety ratio:{ratio}\n")
fp.write(f"Conclusive tests:{n_conc_tests}\n")
fp.flush()
print("Done safety ratio testing")
def test_main(params_file):
params = configparser.ConfigParser()
params.read(params_file)
rev_input_dict = {0 : "right", 1 : "jump"} # hard-coded for now
if params["TESTING"]["TYPE"] == "coverage":
coverage_testing(params,rev_input_dict)
elif params["TESTING"]["TYPE"] == "safety_ratio":
safety_ratio_testing(params,rev_input_dict)
elif params["TESTING"]["TYPE"] == "differential":
differential_testing(params,rev_input_dict)
def eval_single(mario_td,sut, n_eval, n_eval_succ):
pairwise_eval_single(mario_td,sut,sut, n_eval, n_eval_succ)
# rewards = []
# imp_values = []
# wins = []
# overall_coverage = CoverageInfo([])
# agg_coverages = []
# for i in range(n_eval):
# if i % 1 == 0:
# print(f"Eval: {i}")
# single_reward = 0
# rl_state = mario_td.reset(return_state=True)
# coverage_trace = CoverageInfo([])
# imp_values_trace = []
# while True:
# rl_state = torch.from_numpy(np.array(rl_state)).float()
# imp_value = sut.net.importance_value(rl_state)
# cov_info = sut.net.check_coverage(rl_state)
# overall_coverage = overall_coverage.combine(cov_info)
# coverage_trace = coverage_trace.combine(cov_info)
# imp_values_trace.append(imp_value)
# action = sut.act(rl_state,eval_mode=True)
# rl_state,obs,rew = mario_td.step(action,reverse=False,render=False,return_state=True,return_reward=True)
# single_reward += rew
# if "game_over" in obs or "win" in obs:
# win = "win" in obs
# imp_values.append(imp_values_trace)
# agg_coverages.append(coverage_trace)
# wins.append(win)
# break
# rewards.append(single_reward)
# if sum(wins) >= n_eval_succ:
# break
# mean_reward = sum(rewards)/len(rewards)
# std_dev = sqrt(sum(map(lambda r : (r - mean_reward)**2,rewards)) / len(rewards))
# return mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins
def select_tc(mario_td,sut, n_select,n_episodes):
imp_values_at_x_coords = defaultdict(int)
x_coords_count = defaultdict(int)
#wins = []
#overall_coverage = CoverageInfo([])
#agg_coverages = []
for i in range(n_episodes):
if i % 1 == 0:
print(f"Select: {i}")
rl_state = mario_td.reset(return_state=True)
rl_state = torch.from_numpy(np.array(rl_state)).float()
while True:
action = sut.act(rl_state,eval_mode=False)
rl_state,obs,rew = mario_td.step(action,reverse=False,render=False,return_state=True,return_reward=True)
rl_state = torch.from_numpy(np.array(rl_state)).float()
imp_value = sut.net.importance_value(rl_state)
x,y = extract_coords(obs)
imp_values_at_x_coords[x] += imp_value
x_coords_count[x] += 1
if "game_over" in obs or "win" in obs:
break
avg_imps_at_x = []
for x in imp_values_at_x_coords.keys():
avg_imps_at_x.append((x,imp_values_at_x_coords[x] / x_coords_count[x]))
avg_imps_at_x.sort(key = lambda xi: xi[1],reverse = True)
print(avg_imps_at_x)
return list(map(lambda xi: xi[0],avg_imps_at_x[:n_select]))
def pairwise_eval_single(mario_td,actor_sut,eval_sut, n_eval, n_eval_succ):
rewards = []
imp_values = []
wins = []
overall_coverage = CoverageInfo([])
agg_coverages = []
for i in range(n_eval):
if i % 1 == 0:
print(f"Eval: {i}")
single_reward = 0
rl_state = mario_td.reset(return_state=True)
coverage_trace = CoverageInfo([])
imp_values_trace = []
while True:
rl_state = torch.from_numpy(np.array(rl_state)).float()
imp_value = eval_sut.net.importance_value(rl_state)
cov_info = eval_sut.net.check_coverage(rl_state)
overall_coverage = overall_coverage.combine(cov_info)
coverage_trace = coverage_trace.combine(cov_info)
imp_values_trace.append(imp_value)
action = actor_sut.act(rl_state,eval_mode=True)
rl_state,obs,rew = mario_td.step(action,reverse=False,render=False,return_state=True,return_reward=True)
single_reward += rew
if "game_over" in obs or "win" in obs:
win = "win" in obs
imp_values.append(imp_values_trace)
agg_coverages.append(coverage_trace)
wins.append(win)
break
rewards.append(single_reward)
if sum(wins) >= n_eval_succ:
break
mean_reward = sum(rewards)/len(rewards)
std_dev = sqrt(sum(map(lambda r : (r - mean_reward)**2,rewards)) / len(rewards))
return mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins
def avg_imp_value(imp_values,wins):
imps_all = []
imps_wins = []
for i,w in enumerate(wins):
imp_values_trace = imp_values[i]
imps_all.extend(imp_values_trace)
if w:
imps_wins.extend(imp_values_trace)
avg_imp_all = sum(imps_all) / len(imps_all)
avg_imp_win = sum(imps_wins) / len(imps_wins) if len(imps_wins) > 0 else 0
std_dev_all = sqrt(sum(map(lambda i : (i - avg_imp_all)**2,imps_all)) / len(imps_all))
std_dev_win = sqrt(sum(map(lambda i : (i - avg_imp_win)**2,imps_wins)) / len(imps_wins)) if len(imps_wins) > 0 else 0
return avg_imp_all, std_dev_all,avg_imp_win,std_dev_win
def mean_agg_coverage(agg_coverages):
agg_covs = []
for ac in agg_coverages:
agg_covs.append(ac.compute_coverage()[0])
avg_cov = sum(agg_covs) / len(agg_covs)
std_dev = sqrt(sum(map(lambda i : (i - avg_cov)**2,agg_covs)) / len(agg_covs))
return avg_cov,std_dev
def select_important(params_file):
params = configparser.ConfigParser()
params.read(params_file)
stage = params["SETUP"]["STAGE"]
mario_td = setup_mario(params)
sut_names,suts = setup_suts(params)
n_select = params.getint("TESTING","N_SELECT")
n_episodes = params.getint("TESTING","N_EPISODES")
assert len(suts) == 1
res = []
sut = suts[0]
selected_x = select_tc(mario_td,sut, n_select,n_episodes)
print("Selected x values:")
print(selected_x)
def eval_main(params_file):
params = configparser.ConfigParser()
params.read(params_file)
stage = params["SETUP"]["STAGE"]
mario_td = setup_mario(params)
sut_names,suts = setup_suts(params)
res = []
for sut in suts:
mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins = eval_single(mario_td,sut,params.getint("TESTING","N_EVAL"),params.getint("TESTING","N_EVAL_SUCC"))
avg_imp_all, std_dev_all,avg_imp_win,std_dev_win = avg_imp_value(imp_values,wins)
mean_agg_cov, std_dev_agg_cov = mean_agg_coverage(agg_coverages)
res.append((mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins, avg_imp_all, std_dev_all,avg_imp_win,std_dev_win,mean_agg_cov, std_dev_agg_cov))
with open(f"eval_result_{stage}.txt", "w") as fp:
fp.write(str(sut_names))
fp.write("\n")
for i,r in enumerate(res):
print(sut_names[i])
mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins, avg_imp_all, std_dev_all,avg_imp_win,std_dev_win,mean_agg_cov, std_dev_agg_cov = r
fp.write(f"Reward: {mean_reward} +- {std_dev} \n")
fp.write(f"Overall coverage: {overall_coverage.compute_coverage()} \n")
fp.write(f"Avg. trace cov.: {mean_agg_cov} +- {std_dev_agg_cov} \n")
fp.write(f"Avg. Imp. : {avg_imp_all} +- {std_dev_all} \n")
fp.write(f"Avg. Imp. (win): {avg_imp_win} +-{std_dev_win} \n")
fp.write(f"# wins: {sum(wins)} \n")
def pairwise_eval_main(params_file):
params = configparser.ConfigParser()
params.read(params_file)
stage = params["SETUP"]["STAGE"]
mario_td = setup_mario(params)
sut_names,suts = setup_suts(params)
res = []
assert len(suts) == 2
actor_sut = suts[0]
eval_sut = suts[1]
for sut in suts:
mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins = pairwise_eval_single(mario_td,actor_sut,eval_sut,
params.getint("TESTING","N_EVAL"),params.getint("TESTING","N_EVAL_SUCC"))
avg_imp_all, std_dev_all,avg_imp_win,std_dev_win = avg_imp_value(imp_values,wins)
mean_agg_cov, std_dev_agg_cov = mean_agg_coverage(agg_coverages)
res.append((mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins, avg_imp_all, std_dev_all,avg_imp_win,std_dev_win,mean_agg_cov, std_dev_agg_cov))
with open(f"pairwise_eval_result_{stage}.txt", "w") as fp:
fp.write(str(sut_names))
fp.write("\n")
for i,r in enumerate(res):
print(sut_names[i])
mean_reward, std_dev,agg_coverages,overall_coverage,imp_values,wins, avg_imp_all, std_dev_all,avg_imp_win,std_dev_win,mean_agg_cov, std_dev_agg_cov = r
fp.write(f"Reward: {mean_reward} +- {std_dev} \n")
fp.write(f"Overall coverage: {overall_coverage.compute_coverage()} \n")
fp.write(f"Avg. trace cov.: {mean_agg_cov} +- {std_dev_agg_cov} \n")
fp.write(f"Avg. Imp. : {avg_imp_all} +- {std_dev_all} \n")
fp.write(f"Avg. Imp. (win): {avg_imp_win} +-{std_dev_win} \n")
fp.write(f"# wins: {sum(wins)} \n")
def main(params_file):
params = configparser.ConfigParser()
params.read(params_file)
stage = params["SETUP"]["STAGE"]
model_name = params["TESTING"]["MODEL"]
rev_input_dict = {0 : "right", 1 : "jump"}
mario,scheduler = setup_reachability(model_name,rev_input_dict,"win",stage,params)
render = False
n_ep = 800
for e in range(n_ep):
scheduler.reset()
obs = mario.reset()
while True:
action = scheduler.get_input()
if action is None:
print(f"Sampling a random action in {obs}")
action = random.choice(["right","jump"])
else:
pass
#print(action)
obs = mario.step(action,render=render)
reached_state = scheduler.step_to(action, obs)
if reached_state is None:
scheduler.step_to_closest(action,obs)
#print(f"Scheduler undefined at {obs}")
#break
if "game_over" in obs or "win" in obs:
print(obs)
break
if __name__ == "__main__":
import sys
params_file = None
for s in sys.argv:
if ".ini" in s:
params_file = s
if "test" in sys.argv:
test_main(params_file)
elif "pairwise" in sys.argv:
pairwise_eval_main(params_file)
elif "eval" in sys.argv:
eval_main(params_file)
elif "select" in sys.argv:
select_important(params_file)
else:
main(params_file)