Skip to content

[Issue]: <title> ollama query error #1872

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
1 of 3 tasks
plkgq opened this issue Apr 10, 2025 · 0 comments
Open
1 of 3 tasks

[Issue]: <title> ollama query error #1872

plkgq opened this issue Apr 10, 2025 · 0 comments
Labels
triage Default label assignment, indicates new issue needs reviewed by a maintainer

Comments

@plkgq
Copy link

plkgq commented Apr 10, 2025

Do you need to file an issue?

  • I have searched the existing issues and this bug is not already filed.
  • My model is hosted on OpenAI or Azure. If not, please look at the "model providers" issue and don't file a new one here.
  • I believe this is a legitimate bug, not just a question. If this is a question, please use the Discussions area.

Describe the issue

I used the deepseek API to generate a graph. When I query, I can get a normal response based on the knowledge graph. However, when I change the model to the local Ollama model, it does not respond based on the graph, but only responds based on the model itself. Why is that?

Steps to reproduce

No response

GraphRAG Config Used

models:
  default_chat_model:
    type: openai_chat # or azure_openai_chat
    api_base: http://localhost:11434/v1 
    # api_version: 2024-05-01-preview
    auth_type: api_key # or azure_managed_identity
    api_key: your_key 
    # audience: "https://cognitiveservices.azure.com/.default"
    # organization: <organization_id>
    model: deepseek-v3:latest
    # deployment_name: <azure_model_deployment_name>
    encoding_model: cl100k_base # automatically set by tiktoken if left undefined
    model_supports_json: false # recommended if this is available for your model.
    concurrent_requests: 25 # max number of simultaneous LLM requests allowed
    async_mode: threaded # or asyncio
    retry_strategy: native
    max_retries: -1                   # set to -1 for dynamic retry logic (most optimal setting based on server response)
    tokens_per_minute: 0              # set to 0 to disable rate limiting
    requests_per_minute: 0            # set to 0 to disable rate limiting
  default_embedding_model:
    type: openai_embedding # or azure_openai_embedding
    api_base: https://open.bigmodel.cn/api/paas/v4
    # api_version: 2024-05-01-preview
    auth_type: api_key # or azure_managed_identity
    api_key: your_key
    # audience: "https://cognitiveservices.azure.com/.default"
    # organization: <organization_id>
    model: embedding-2
    # deployment_name: <azure_model_deployment_name>
    encoding_model: cl100k_base # automatically set by tiktoken if left undefined
    model_supports_json: true # recommended if this is available for your model.
    concurrent_requests: 25 # max number of simultaneous LLM requests allowed
async_mode: threaded # or asyncio
    retry_strategy: native
    max_retries: -1                   # set to -1 for dynamic retry logic (most optimal setting based on server response)
    tokens_per_minute: 0              # set to 0 to disable rate limiting
    requests_per_minute: 0            # set to 0 to disable rate limiting

### Input settings ###

input:
  type: file # or blob
  file_type: text # [csv, text, json]
  base_dir: "input"

chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id]

### Output/storage settings ###
## If blob storage is specified in the following four sections,
## connection_string and container_name must be provided

output:
  type: file # [file, blob, cosmosdb]
  base_dir: "output"

cache:
  type: file # [file, blob, cosmosdb]
  base_dir: "cache"

reporting:
  type: file # [file, blob, cosmosdb]
  base_dir: "logs"

vector_store:
  default_vector_store:
    type: lancedb
    db_uri: output/lancedb
    container_name: default
    overwrite: True

### Workflow settings ###

embed_text:
  model_id: default_embedding_model
  vector_store_id: default_vector_store

extract_graph:
  model_id: default_chat_model
  prompt: "prompts/extract_graph.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  model_id: default_chat_model
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

extract_graph_nlp:
  text_analyzer:
    extractor_type: regex_english # [regex_english, syntactic_parser, cfg]

cluster_graph:
  max_cluster_size: 10

extract_claims:
  enabled: false
  model_id: default_chat_model
  prompt: "prompts/extract_claims.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  model_id: default_chat_model
  graph_prompt: "prompts/community_report_graph.txt"
  text_prompt: "prompts/community_report_text.txt"
  max_length: 2000
  max_input_length: 8000

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes (embed_graph must also be enabled)

snapshots:
  graphml: false
  embeddings: false

### Query settings ###
## The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.
## See the config docs: https://microsoft.github.io/graphrag/config/yaml/#query

local_search:
  chat_model_id: default_chat_model
  embedding_model_id: default_embedding_model
  prompt: "prompts/local_search_system_prompt.txt"

global_search:
  chat_model_id: default_chat_model
  map_prompt: "prompts/global_search_map_system_prompt.txt"
  reduce_prompt: "prompts/global_search_reduce_system_prompt.txt"
  knowledge_prompt: "prompts/global_search_knowledge_system_prompt.txt"

drift_search:
  chat_model_id: default_chat_model
  embedding_model_id: default_embedding_model
  prompt: "prompts/drift_search_system_prompt.txt"
  reduce_prompt: "prompts/drift_search_reduce_prompt.txt"

basic_search:
  chat_model_id: default_chat_model
  embedding_model_id: default_embedding_model
  prompt: "prompts/basic_search_system_prompt.txt"

Logs and screenshots

This is using the local ollama model,it‘ s error
Image

This is using the deepseek api
Image

Additional Information

  • GraphRAG Version: v2.1.0
  • Operating System: Ubuntu 20.04
  • Python Version: 3.11
  • Related Issues:
@plkgq plkgq added the triage Default label assignment, indicates new issue needs reviewed by a maintainer label Apr 10, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
triage Default label assignment, indicates new issue needs reviewed by a maintainer
Projects
None yet
Development

No branches or pull requests

1 participant