-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_best_timestep.py
61 lines (60 loc) · 2.28 KB
/
find_best_timestep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import mujoco
import os
import time
import numpy as np
def find_best_timestep(model_path, timesteps=None, sim_seconds=5.0):
# 1. Coarse search
coarse_timesteps = [0.001, 0.002, 0.005, 0.01, 0.02, 0.033, 0.05, 0.1, 0.2, 0.5, 1.0]
results = []
for ts in coarse_timesteps:
model = mujoco.MjModel.from_xml_path(model_path)
model.opt.timestep = ts
data = mujoco.MjData(model)
sim_steps = int(sim_seconds / ts)
start = time.time()
for _ in range(sim_steps):
mujoco.mj_step(model, data)
elapsed = time.time() - start
if elapsed > 0:
realtime_factor = sim_seconds / elapsed
else:
realtime_factor = float('inf')
results.append({'timestep': ts, 'hz': 1/ts, 'elapsed': elapsed, 'realtime_factor': realtime_factor})
# Find best coarse
best = None
for r in results:
if r['realtime_factor'] >= 1.0:
if best is None or r['timestep'] > best['timestep']:
best = r
# 2. Fine search around best coarse
if best:
fine_start = max(best['timestep'] - 0.1, 0.001)
fine_end = min(best['timestep'] + 0.1, 1.0)
fine_timesteps = [round(x, 4) for x in np.arange(fine_start, fine_end, 0.0005)]
fine_results = []
for ts in fine_timesteps:
model = mujoco.MjModel.from_xml_path(model_path)
model.opt.timestep = ts
data = mujoco.MjData(model)
sim_steps = int(sim_seconds / ts)
start = time.time()
for _ in range(sim_steps):
mujoco.mj_step(model, data)
elapsed = time.time() - start
if elapsed > 0:
realtime_factor = sim_seconds / elapsed
else:
realtime_factor = float('inf')
fine_results.append({'timestep': ts, 'hz': 1/ts, 'elapsed': elapsed, 'realtime_factor': realtime_factor})
# Find best fine
best_fine = None
for r in fine_results:
if r['realtime_factor'] >= 1.0:
if best_fine is None or r['timestep'] > best_fine['timestep']:
best_fine = r
if best_fine:
return best_fine, fine_results
else:
return best, results
else:
return None, results