If you've already executed this through a raw query, then skip this step.
import { MikroORM } from '@mikro-orm/postgresql';
import { extend } from 'lanterndata/mikro-orm';
const orm = await MikroORM.init({});
const em = orm.em.fork();
extend(em);
await em.createLanternExtension();
// For the LanternExtras, you need to run this instead
await em.createLanternExtrasExtension();
import { toSql } from 'lanterndata/mikro-orm';
const Book = new EntitySchema({
name: 'Book',
tableName: 'books',
properties: {
id: { type: 'number', primary: true },
name: { type: 'string', nullable: true },
url: { type: 'string', nullable: true },
embedding: { type: 'Array<number>', nullable: true },
},
});
await em.execute('CREATE INDEX book_index ON books USING lantern_hnsw(embedding dist_l2sq_ops');
const books = booksToInsert.map((book) =>
em.create(Book, {
...book,
// use toSql method to conver [1,2,3] inro '{1,2,3}'
embedding: toSql(book.embedding),
}),
);
await em.persistAndFlush(books);
You can performe vectore search using those distance methods.
await em
.qb(Book)
.orderBy({ [em.l2Distance('embedding', [1, 1, 1])]: 'ASC' })
.limit(5)
.getResult();
await em
.qb(Book)
.orderBy({ [em.cosineDistance('embedding', [1, 1, 1])]: 'ASC' })
.limit(5)
.getResult();
await em
.qb(Book)
.orderBy({ [em.hammingDistance('embedding', [1, 1, 1])]: 'ASC' })
.limit(5)
.getResult();
import { MikroORM } from '@mikro-orm/postgresql';
import { extend } from 'lanterndata/mikro-orm';
import { TextEmbeddingModels, ImageEmbeddingModels } from 'lanterndata/embeddings';
const orm = await MikroORM.init({});
const em = orm.em.fork();
extend(em);
const { BAAI_BGE_BASE_EN } = TextEmbeddingModels;
const { CLIP_VIT_B_32_VISUAL } = ImageEmbeddingModels;
// text embedding
const text = 'hello world';
const result = await em.generateTextEmbedding(BAAI_BGE_BASE_EN, text);
console.log(result[0].text_embedding);
// image embedding
const imageUrl = 'https://lantern.dev/images/home/footer.png';
const result = await em.generateImageEmbedding(CLIP_VIT_B_32_VISUAL, imageUrl);
console.log(result[0].image_embedding);
import { MikroORM } from '@mikro-orm/postgresql';
import { extend } from 'lanterndata/mikro-orm';
import { TextEmbeddingModels, ImageEmbeddingModels } from 'lanterndata/embeddings';
const orm = await MikroORM.init({});
const em = orm.em.fork();
extend(em);
const { BAAI_BGE_BASE_EN } = TextEmbeddingModels;
const { CLIP_VIT_B_32_VISUAL } = ImageEmbeddingModels;
const text = 'hello world';
const imageUrl = 'https://lantern.dev/images/home/footer.png';
// distance search with text embedding generation
await em
.qb(Book)
.select('*')
.orderBy({ [em.cosineDistance('embedding', em.textEmbedding(BAAI_BGE_BASE_EN, text))]: 'DESC' })
.limit(2)
.execute('all');
// distance search with image embedding generation
await em
.qb(Book)
.select('*')
.orderBy({ [em.l2Distance('embedding', em.imageEmbedding(CLIP_VIT_B_32_VISUAL, imageUrl))]: 'DESC' })
.limit(2)
.execute('all');
Corresponding SQL code (example):
SELECT * FROM "books"
ORDER BY "embedding" <-> image_embedding('clip/ViT-B-32-visual', "...") DESC
LIMIT 2;
openaiEmbedding(OpenAITextEmbeddingModelType, text, [dimension])
cohereEmbedding(CohereTextEmbeddingModelType, text)
import { OpenAITextEmbeddingModelType, CohereTextEmbeddingModelType } from 'lanterndata/embeddings';
em.openaiEmbedding(OpenAITextEmbeddingModelType.ADA_002, 'hello world', 256);
em.cohereEmbedding(CohereTextEmbeddingModelType.ENGLISH_V3_0, 'hello world');