-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvcc-apx.agda
269 lines (205 loc) · 10.6 KB
/
vcc-apx.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
{---------------------------------------------}
{-- Contexts and observational approximation -}
{---------------------------------------------}
module vcc-apx where
open import Level as L using (Level ; _⊔_)
open import Function as F hiding (_∋_ ; _$_)
open import acmm
open import relations
open import big-step-prop
open import obs-apx
open import sim-fusion-lemmas
-- the null weakening/renaming
Ren₀ : ∀ {Γ} → ε ⊆ Γ
var Ren₀ ()
-- generalities on non-empty (ground) substitutions
succ : ∀ {Γ Δ} {τ} → Γ ∙ τ ⊨ Δ → Γ ⊨ Δ
var (succ ρ) v = var ρ (su v)
zero : ∀ {Γ Δ} {τ} → Γ ∙ τ ⊨ Δ → Val τ Δ
zero ρ = var ρ ze
cons-rho : ∀ {Γ Δ} {σ} (ρ : Γ ∙ σ ⊨ Δ) →
∀ {τ} v → var (succ ρ `∙ zero ρ) v ≡ var ρ {τ} v
cons-rho ρ ze = PEq.refl
cons-rho ρ (su v) = PEq.refl
ren₀-zero : ∀ {Γ} {τ} → Env₀ (Γ ∙ τ) → Val τ Γ
ren₀-zero ρ = Ren₀ *-Var zero ρ
sub₀-zero : ∀ {Γ} {τ} → Env₀ (Γ ∙ τ) → Γ ∙ τ ⊨ Γ
sub₀-zero ρ = ι^Env `∙ ren₀-zero ρ
zero* : ∀ {Γ} {σ τ} → Env₀ (Γ ∙ τ) → Trm σ (Γ ∙ τ) → Trm σ Γ
zero* ρ M = M ⟨ ren₀-zero ρ /var₀⟩
succ-ren₀-zero : ∀ {Γ} {τ} (ρ : Env₀ (Γ ∙ τ)) →
((succ ρ) *-Val (ren₀-zero ρ)) ≡ zero ρ
succ-ren₀-zero ρ = ι^Var^Env-lemma-aux (zero ρ) Ren₀ (succ ρ) (λ ())
subst-succ : ∀ {Γ} {σ τ} → (ρ : Env₀ (Γ ∙ τ)) → (M : Trm σ (Γ ∙ τ)) →
subst (zero* ρ M) (succ ρ) ≡ subst M (succ ρ `∙ zero ρ)
subst-succ ρ M rewrite sub-sub (succ ρ) (ι^Env `∙ (ren₀-zero ρ)) M =
subst-ext M [ P ][ succ-ren₀-zero ρ ,,, (λ v → PEq.refl) ]
where P = λ {τ} v →
var (succ ρ *-Sub (sub₀-zero ρ)) v ≡ var (succ ρ `∙ zero ρ) {τ} v
-- iterated sequential substitution 'subst₀'
subst₀ : ∀ {Γ} {σ} → (ρ : Env₀ Γ) → (M : Trm σ Γ) → Trm₀ σ
subst₀ {ε} ρ M = M
subst₀ {Γ ∙ τ} ρ M = subst₀ (succ ρ) (zero* ρ M)
-- parallel substitution 'subst' is iterated sequential substitution 'subst₀'
subst-equiv : ∀ {Γ} {σ} → (ρ : Env₀ Γ) → (M : Trm σ Γ) →
subst₀ ρ M ≡ subst M ρ
subst-equiv {ε} ρ M rewrite ι^Env₀-lemma ρ M = PEq.refl
subst-equiv {Γ ∙ τ} ρ M rewrite subst-equiv (succ ρ) (zero* ρ M) |
subst-succ ρ M
= subst-ext M (cons-rho ρ)
-- iterated let reduction
data _→$_ : GRel₀^T where
→$-refl : {σ : Ty} {M : Trm₀ σ} → M →$ M
→$-step : {σ τ : Ty} {M : Trm₀ τ} {N : (σ ⊢ Trm τ) _} {V : _} →
M →$ (letV V N) → M →$ (N ⟨ V /var₀⟩)
→MN-$ : {σ τ : Ty} {M M' : Trm₀ σ} {N : (σ ⊢ Trm τ) _} →
M →$ M' → `let M N →$ `let M' N
lemma-2-3i-$ : {τ : Ty} {M N : Trm₀ τ} {V : Val₀ τ} →
(dev : M ⇓ V) → (red : M →$ N) → N ⇓ V
lemma-2-3i-$ dev →$-refl = dev
lemma-2-3i-$ dev (→$-step red) with lemma-2-3i-$ dev red
... | ⇓let ⇓val devN = devN
lemma-2-3i-$ (⇓let devM devN) (→MN-$ red) with lemma-2-3i-$ devM red
... | devM' = ⇓let devM' devN
lemma-2-3ii-$ : {τ : Ty} {M N : Trm₀ τ} {V : Val₀ τ} →
(red : M →$ N) → (dev : N ⇓ V) → M ⇓ V
lemma-2-3ii-$ →$-refl dev = dev
lemma-2-3ii-$ (→$-step red) dev = lemma-2-3ii-$ red (⇓let ⇓val dev)
lemma-2-3ii-$ (→MN-$ red) (⇓let devM' devN) =
⇓let (lemma-2-3ii-$ red devM') devN
lemma-2-10i-$ : {ℓ^V : Level} {τ : Ty} {R : GRel^V {ℓ^V} {τ}}
{M N P : Trm₀ τ} → M →$ P → (M [ R ]^T N) → P [ R ]^T N
lemma-2-10i-$ red r = r ∘ (lemma-2-3ii-$ red)
lemma-2-10ii-$ : {ℓ^V : Level} {τ : Ty} {R : GRel^V {ℓ^V} {τ}}
{M N P : Trm₀ τ} → (M [ R ]^T N) → N →$ P → M [ R ]^T P
lemma-2-10ii-$ r red der with r der
... | V , derM , rUV = V , lemma-2-3i-$ derM red , rUV
-- iterated letV redex construction
letVΓ : ∀ {Γ} {σ} → (ρ : Env₀ Γ) → (M : Trm σ Γ) → Trm₀ σ
letVΓ {ε} ρ M = M
letVΓ {Γ ∙ τ} ρ M = letVΓ (succ ρ) (letV (ren₀-zero ρ) M)
$-subst₀ : ∀ {Γ} {σ} → (ρ : Env₀ Γ) → (M : Trm σ Γ) → letVΓ ρ M →$ subst M ρ
$-subst₀ {ε} ρ M rewrite ι^Env₀-lemma ρ M = →$-refl
$-subst₀ {Γ ∙ τ} ρ M with $-subst₀ (succ ρ) (letV (ren₀-zero ρ) M)
... | ih rewrite PEq.sym (subst-equiv ρ M) | succ-ren₀-zero ρ |
subst-equiv (succ ρ) (zero* ρ M) |
subst-succ ρ M
with →$-step ih
... | prf rewrite PEq.sym (lemma34 M (succ ρ) (zero ρ)) = prf
-- VCC contexts; no additional renaming/substitution in holes
infixr 20 VCC⟪_⊢_⟫
data VCC⟪_⊢_⟫ (Γ : Cx) (τ : Ty) : {f : CBV} → PreModel L.zero
where
`λ : admits-λ λ {f} → VCC⟪ Γ ⊢ τ ⟫ {f}
`exp : ∀ {f} {σ} → [ Exp {f} σ ⟶ VCC⟪ Γ ⊢ τ ⟫ {f} σ ]
-- no holes; saves re-traversal
⟪-⟫ : VCC⟪ Γ ⊢ τ ⟫ {`trm} τ Γ -- hole
`val : {σ : Ty} → [ VCC⟪ Γ ⊢ τ ⟫ {`val} σ ⟶ VCC⟪ Γ ⊢ τ ⟫ {`trm} σ ]
-- lifting
_`$_ : admits-$ λ {f} → VCC⟪ Γ ⊢ τ ⟫ {f}
`if : admits-if λ {f} → VCC⟪ Γ ⊢ τ ⟫ {f}
`let : admits-let λ {f} → VCC⟪ Γ ⊢ τ ⟫ {f}
-- instantiation
_⟪_⟫VCC : ∀ {f} {Γ Δ} {σ τ}
(P : VCC⟪ Γ ⊢ σ ⟫ {f} τ Δ) (T : Trm σ Γ) → Exp {f} τ Δ
`exp E ⟪ T ⟫VCC = E
`λ M ⟪ T ⟫VCC = `λ (M ⟪ T ⟫VCC)
⟪-⟫ ⟪ T ⟫VCC = T
(`val V) ⟪ T ⟫VCC = `val (V ⟪ T ⟫VCC)
(V `$ W) ⟪ T ⟫VCC = (V ⟪ T ⟫VCC) `$ (W ⟪ T ⟫VCC)
`if B L R ⟪ T ⟫VCC = `if (B ⟪ T ⟫VCC) (L ⟪ T ⟫VCC) (R ⟪ T ⟫VCC)
`let M N ⟪ T ⟫VCC = `let (M ⟪ T ⟫VCC) (N ⟪ T ⟫VCC)
-- action of substitution by iterated letV redex construction
VCC-sub : ∀ {Γ Δ} {σ τ} → Env₀ Δ → VCC⟪ Γ ⊢ σ ⟫ {`trm} τ Δ →
VCC⟪ Γ ⊢ σ ⟫ {`trm} τ ε
VCC-sub {Δ = ε} ρ C = C
VCC-sub {Δ = Δ ∙ ω} ρ C =
VCC-sub (succ ρ) (`let (`exp (`val (ren₀-zero ρ))) C)
-- commutes with instantiation
VCC-sub-$ : ∀ {Γ Δ} {σ τ} →
(ρ : Env₀ Δ) → (C : VCC⟪ Γ ⊢ σ ⟫ τ Δ) → (M : Trm σ Γ) →
(VCC-sub ρ C) ⟪ M ⟫VCC ≡ letVΓ ρ (C ⟪ M ⟫VCC)
VCC-sub-$ {Δ = ε} ρ C M = PEq.refl
VCC-sub-$ {Δ = Δ ∙ τ} ρ C =
VCC-sub-$ (succ ρ) (`let (`exp (`val (ren₀-zero ρ))) C)
-- composition of contexts
_⟪∘⟫VCC_ : ∀ {f} {Γ Δ Ξ} {σ τ υ}
(P : VCC⟪ Δ ⊢ σ ⟫ {f} τ Ξ)
(Q : VCC⟪ Γ ⊢ υ ⟫ {`trm} σ Δ) → VCC⟪ Γ ⊢ υ ⟫ {f} τ Ξ
`exp E ⟪∘⟫VCC Q = `exp E
`λ M ⟪∘⟫VCC Q = `λ (M ⟪∘⟫VCC Q)
⟪-⟫ ⟪∘⟫VCC Q = Q
`val P ⟪∘⟫VCC Q = `val (P ⟪∘⟫VCC Q)
(F `$ A) ⟪∘⟫VCC Q = F ⟪∘⟫VCC Q `$ A ⟪∘⟫VCC Q
`if B L R ⟪∘⟫VCC Q = `if (B ⟪∘⟫VCC Q) (L ⟪∘⟫VCC Q) (R ⟪∘⟫VCC Q)
`let P R ⟪∘⟫VCC Q = `let (P ⟪∘⟫VCC Q) (R ⟪∘⟫VCC Q)
-- commutation between composition and instantiation
_⟪∘_⟫VCC_ : ∀ {f} {Γ Δ Ξ} {σ τ υ} (P : VCC⟪ Δ ⊢ σ ⟫ {f} τ Ξ) (T : Trm υ Γ) →
(Q : VCC⟪ Γ ⊢ υ ⟫ {`trm} σ Δ) →
(P ⟪∘⟫VCC Q) ⟪ T ⟫VCC ≡ P ⟪ Q ⟪ T ⟫VCC ⟫VCC
`exp E ⟪∘ T ⟫VCC Q = PEq.refl
`λ M ⟪∘ T ⟫VCC Q rewrite M ⟪∘ T ⟫VCC Q = PEq.refl
⟪-⟫ ⟪∘ T ⟫VCC Q = PEq.refl
`val P ⟪∘ T ⟫VCC Q rewrite P ⟪∘ T ⟫VCC Q = PEq.refl
(F `$ A) ⟪∘ T ⟫VCC Q rewrite F ⟪∘ T ⟫VCC Q | A ⟪∘ T ⟫VCC Q = PEq.refl
`if B L R ⟪∘ T ⟫VCC Q
rewrite B ⟪∘ T ⟫VCC Q | L ⟪∘ T ⟫VCC Q | R ⟪∘ T ⟫VCC Q = PEq.refl
`let P R ⟪∘ T ⟫VCC Q rewrite P ⟪∘ T ⟫VCC Q | R ⟪∘ T ⟫VCC Q = PEq.refl
-- K-approximation wrt K = VCC
vcc-apx : ∀ {f} {Γ} {υ} → Rel^E {f} {L.zero} {Γ} {υ}
vcc-apx {f} = case f return (λ f → ∀ {Γ} {υ} → Rel^E {f} {_} {Γ} {υ})
of λ { `val → apxV ; `trm → apxT }
where
apxV : ∀ {Γ} {τ} → Rel^V {_} {Γ} {τ}
apxT : ∀ {Γ} {τ} → Rel^T {_} {Γ} {τ}
apxV {Γ} {τ} = _[ apxT {Γ} {τ} ]^V_
apxT {Γ} {τ} M N =
{υ : Ty} (P : VCC⟪ Γ ⊢ τ ⟫ υ ε) →
gnd-eqv₀ {`trm} (P ⟪ M ⟫VCC) (P ⟪ N ⟫VCC)
-- open ground equivalence follows trivially: use the obvious context,
-- the substitution instance of the hole itself!
vcc-apx→gnd-eqv^T : ∀ {Γ} {τ} {M N} → vcc-apx M N → gnd-eqv {`trm} {Γ} {τ} M N
vcc-apx→gnd-eqv^T {Γ} {τ} {M} {N} sMN ρ = gnd-eqv-subst
where P : VCC⟪ Γ ⊢ τ ⟫ τ ε
P = VCC-sub ρ ⟪-⟫
$-subst : ∀ M → (P ⟪ M ⟫VCC) →$ subst M ρ
$-subst M rewrite VCC-sub-$ ρ ⟪-⟫ M with $-subst₀ ρ M
... | prf rewrite subst-equiv ρ M = prf
gnd-eqv-subst : gnd-eqv₀ {`trm} (subst M ρ) (subst N ρ)
gnd-eqv-subst = lemma-2-10i-$ ($-subst M)
(lemma-2-10ii-$ (sMN P) ($-subst N))
vcc-apx₀ : GRel₀^E
vcc-apx₀ {f} = case f return (λ f → ∀ {υ} → Rel^E {f} {_} {ε} {υ})
of λ { `val → apxV ; `trm → apxT }
where
apxV : GRel₀^V
apxT : GRel₀^T
apxV {τ} = _[ apxT {τ} ]^V_
apxT = vcc-apx {`trm} {ε}
-- Convert an VCC to a VSC: the star in the paper
vcc-to-vsc : ∀ {f} {Γ Δ} {σ τ} → VCC⟪ Γ ⊢ σ ⟫ {f} τ Δ → VSC⟪ Γ ⊢ σ ⟫ {f} τ Δ
vcc-to-vsc (`λ M) = `λ (vcc-to-vsc M)
vcc-to-vsc (`exp E) = `exp E
vcc-to-vsc ⟪-⟫ = ⟪- ι^Env -⟫
vcc-to-vsc (`val P) = `val (vcc-to-vsc P)
vcc-to-vsc (F `$ A) = (vcc-to-vsc F) `$ (vcc-to-vsc A)
vcc-to-vsc (`if B L R) = `if (vcc-to-vsc B) (vcc-to-vsc L) (vcc-to-vsc R)
vcc-to-vsc (`let P Q) = `let (vcc-to-vsc P) (vcc-to-vsc Q)
vcc→vsc⟪_⟫ : ∀ {f} {Γ Δ} {σ τ} →
(M : Trm σ Γ) → (P : VCC⟪ Γ ⊢ σ ⟫ {f} τ Δ) →
(vcc-to-vsc P) ⟪ M ⟫ ≡ P ⟪ M ⟫VCC
vcc→vsc⟪ M ⟫ (`λ P) rewrite vcc→vsc⟪ M ⟫ P = PEq.refl
vcc→vsc⟪ M ⟫ (`exp E) = PEq.refl
vcc→vsc⟪ M ⟫ ⟪-⟫ = ι^Env-lemma M
vcc→vsc⟪ M ⟫ (`val P) rewrite vcc→vsc⟪ M ⟫ P = PEq.refl
vcc→vsc⟪ M ⟫ (F `$ A) rewrite vcc→vsc⟪ M ⟫ F | vcc→vsc⟪ M ⟫ A = PEq.refl
vcc→vsc⟪ M ⟫ (`if B L R)
rewrite vcc→vsc⟪ M ⟫ B | vcc→vsc⟪ M ⟫ L | vcc→vsc⟪ M ⟫ R = PEq.refl
vcc→vsc⟪ M ⟫ (`let P Q) rewrite vcc→vsc⟪ M ⟫ P | vcc→vsc⟪ M ⟫ Q = PEq.refl
-- VCCs are contained within VSCs
vsc-apx→vcc-apx^T :
∀ {Γ} {τ} {M N} → vsc-apx M N → vcc-apx {`trm} {Γ} {τ} M N
vsc-apx→vcc-apx^T {Γ} {τ} {M} {N} sMN P with sMN (vcc-to-vsc P)
... | hyp rewrite vcc→vsc⟪ M ⟫ P | vcc→vsc⟪ N ⟫ P = hyp
vsc-apx₀→vcc-apx₀^T : ∀ {τ} {M N : Trm₀ τ} → vsc-apx₀ M N → vcc-apx₀ M N
vsc-apx₀→vcc-apx₀^T = vsc-apx→vcc-apx^T {ε}