-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtranspositiontable.c
305 lines (270 loc) · 9.6 KB
/
transpositiontable.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include "transpositiontable.h"
bool TranspositionTable_isPrime(long long n) {
long long i;
// Any even number is not prime (composite)
if (!(n & 1)) {
return false;
}
// Check every odd number and test if prime
for (i = 3ll; i * i <= n; i += 2) {
if (!(n % i)) { // (n mod p)=0 is not prime
return false;
}
}
return true;
}
long long TranspositionTable_isPrevNumPrime(long long n) {
// If n is even, then subtract two; otherwise subtract one
n = n & 1ll ? n - 2ll : n - 1ll;
// Test for primality until there is a prime
while (!TranspositionTable_isPrime(n)) {
n -= 2ll;
}
return n;
}
long long TranspositionTable_getPrimeClosestAndGreaterThanPowerOf2(long long n) {
long long power = 1ll;
while ((power <= n) && !TranspositionTable_isPrime(n)) {
power <<= 1ll;
}
return power;
}
void TranspositionTable_reset(TranspositionTable *tt) {
GAME_VARIANT == POWERUP_VARIANT ? memset(tt->entries, 0, sizeof(PowerUp_HashtableEntry) * tt->size) : memset(tt->entries, 0, sizeof(HashtableEntry) * tt->size);
}
void TranspositionTable_dynamicReset(TranspositionTable *tt, long long resetSize) {
#ifdef __GNUC__
TranspositionTable_destroy(tt);
TranspositionTable_initialize(tt, resetSize);
#else
TranspositionTable_reset(tt);
#endif
}
bool TranspositionTable_initialize(TranspositionTable *tt, long long initSize) {
// A transposition table with less than three entries does not make practical sense
if (initSize > 3) {
// A prime number of entries minimizes hash collisions
tt->size = TranspositionTable_isPrevNumPrime(initSize);
// Try to request memory from the operating system until no more is available
if (GAME_VARIANT == POWERUP_VARIANT) {
if (!(tt->powerUpEntries = malloc(sizeof(PowerUp_HashtableEntry) * tt->size))) {
tt->size = 0;
return false;
}
else {
TranspositionTable_reset(tt);
}
}
else {
if (!(tt->entries = malloc(sizeof(HashtableEntry) * tt->size))) {
tt->size = 0;
return false;
}
else {
TranspositionTable_reset(tt);
}
}
return true;
}
return false;
}
bool TranspositionTable_resize(TranspositionTable *tt, long long newSize) {
if (newSize > 3) {
// Save the old addresses in case the resizing operation fails
HashtableEntry *tt_oldEntries = tt->entries;
PowerUp_HashtableEntry *putt_oldEntries = tt->powerUpEntries;
long long tt_oldSize = tt->size;
tt->size = TranspositionTable_isPrevNumPrime(newSize);
if (GAME_VARIANT == POWERUP_VARIANT) {
if (!(tt->powerUpEntries = realloc(tt->powerUpEntries, sizeof(PowerUp_HashtableEntry) * tt->size))) {
tt->powerUpEntries = putt_oldEntries;
tt->size = tt_oldSize;
return false;
}
else {
TranspositionTable_reset(tt);
}
}
else {
if (!(tt->entries = realloc(tt->entries, sizeof(HashtableEntry) * tt->size))) {
tt->entries = tt_oldEntries;
tt->size = tt_oldSize;
return false;
}
else {
TranspositionTable_reset(tt);
}
}
return true;
}
return false;
}
void TranspositionTable_destroy(TranspositionTable *tt) {
free(tt->entries);
tt->entries = NULL;
}
void TranspositionTable_store(TranspositionTable *tt, Position key, int8_t value, short depth) {
long long i = key % tt->size;
tt->entries[i].key = key;
tt->entries[i].value = value;
tt->entries[i].depth = depth;
}
void TranspositionTable_storeBounds(TranspositionTable *tt, Position key, int8_t value, short depth, int8_t bounds) {
long long i = key % tt->size;
tt->entries[i].key = key;
tt->entries[i].value = value;
tt->entries[i].depth = depth;
tt->entries[i].bounds = bounds;
}
void TranspositionTable_powerup_store(TranspositionTable *tt, Position key, Position anvilKey, Position bombKey, Position wallKey, Position x2Key, int8_t value, short depth) {
long long i = key % tt->size;
tt->powerUpEntries[i].normalKey = key;
tt->powerUpEntries[i].anvilKey = anvilKey;
tt->powerUpEntries[i].bombKey = bombKey;
tt->powerUpEntries[i].wallKey = wallKey;
tt->powerUpEntries[i].x2Key = x2Key;
tt->powerUpEntries[i].value = value;
tt->powerUpEntries[i].depth = depth;
}
void TranspositionTable_storeWithoutDepth(TranspositionTable *tt, Position key, int8_t value) {
long long i = key % tt->size;
tt->entries[i].key = key;
tt->entries[i].value = value;
}
int TranspositionTable_normal_loadValue(TranspositionTable *tt, Position key) {
long long i = key % tt->size;
return (tt->entries[i].key) == key ? tt->entries[i].value : TT_NORMAL_UNKNOWN;
}
int TranspositionTable_popout_loadValue(TranspositionTable *tt, Position key) {
long long i = key % tt->size;
return (tt->entries[i].key == key) ? tt->entries[i].value : TT_POPOUT_UNKNOWN;
}
int TranspositionTable_popout_loadDepth(TranspositionTable *tt, Position key) {
long long i = key % tt->size;
return tt->entries[i].key == key ? tt->entries[i].depth : -1;
}
int TranspositionTable_loadBounds(TranspositionTable* tt, Position key) {
long long i = key % tt->size;
return tt->entries[i].key == key ? tt->entries[i].bounds : TT_UNKNOWNBOUND;
}
int TranspositionTable_powerup_loadValue(TranspositionTable *tt, Position key, Position anvilKey, Position bombKey, Position wallKey, Position x2Key) {
long long i = key % tt->size;
if (tt->powerUpEntries[i].normalKey == key &&
tt->powerUpEntries[i].anvilKey == anvilKey &&
tt->powerUpEntries[i].bombKey == bombKey &&
tt->powerUpEntries[i].wallKey == wallKey &&
tt->powerUpEntries[i].x2Key == x2Key) {
return tt->powerUpEntries[i].value;
}
return TT_POPOUT_UNKNOWN;
}
bool TranspositionTable_depthLessOrEqual(TranspositionTable *tt, Position key, short depth) {
return tt->entries[key % tt->size].depth <= depth;
}
bool TranspositionTable_depthGreaterOrEqual(TranspositionTable *tt, Position key, short depth) {
return tt->entries[key % tt->size].depth >= depth;
}
bool TranspositionTable_powerup_depthEquality(TranspositionTable *tt, Position key, Position anvilKey, Position bombKey, Position wallKey, Position x2Key, short depth) {
long long i = key % tt->size;
if (tt->powerUpEntries[i].normalKey == key && tt->powerUpEntries[i].anvilKey == anvilKey && tt->powerUpEntries[i].bombKey == bombKey && tt->powerUpEntries[i].wallKey == wallKey && tt->powerUpEntries[i].x2Key == x2Key) {
return tt->powerUpEntries[i].depth == depth;
}
return false;
}
int TranspositionTable_isUnique(TranspositionTable *tt, Position hash) {
long long i = hash % tt->size, j;
if (tt->entries[i].key) { // Look up a valid hash entry
if (tt->entries[i].key == hash) { // Exact match
return 1;
}
else { // Hash collision and linear probing
for (j = i + 1; tt->entries[j].key && j != i;) { // End condition when we have looped over
if (tt->entries[j].key == hash) { // Collision with a match
return 2;
}
if (++j == tt->size) { // Reached the end of the table; now wrap around to zero
j = 0;
continue;
}
}
return 0; // Table has no more room for more entries
}
}
else { // No hash entry
//tt->entries[i].key = hash;
return 0;
}
}
// Stores a book entry to the transposition table -- it does collision checking via linear probing
bool TranspositionTable_BookFile_store(TranspositionTable *tt, Position key, int8_t value) {
long long i = key % tt->size, j = i + 1;
// Is there already an existing entry in the transposition table?
if (tt->entries[i].key && tt->entries[i].key != key) {
while (j != i) { // Continue until wraparound
if (!tt->entries[j].key) { // Check if there is an empty entry following the previous entry then add
tt->entries[j].key = key;
tt->entries[j].value = value;
return true;
}
if (++j == tt->size) { // Wraparound to zero when reaching the end of the transposition table
j = 0;
}
}
return false; // Storage space ran out for new entries
}
// This space is not occupied by any entries
tt->entries[i].key = key;
tt->entries[i].value = value;
return true; // Successful entry storage
}
// Loads a book entry from the transposition table with linear probing
bool TranspositionTable_BookFile_load(TranspositionTable *tt, Position key, uint8_t *bookTableValue) {
long long i = key % tt->size, j = i + 1;
if (tt->entries[i].key == key) { // Look for an exact entry
*bookTableValue = tt->entries[i].value;
return true;
}
while (j != i) {
if (tt->entries[j].key) { // There has to be entries following this one
if (tt->entries[j].key == key) { // Look for linearly probed entries
*bookTableValue = tt->entries[j].value;
return true;
}
if (++j == tt->size) { // Loop around to zero when reaching the end
j = 0;
}
}
else {
break;
}
}
return false; // No matching entries
}
/*void RepetitionTable_initialize(RepetitionTable *rt) {
rt->repetitionEntries = calloc(MOVESIZE, sizeof(RepetitionTable_Entry));
rt->size = 0;
}
void RepetitionTable_reset(RepetitionTable *rt) {
memset(rt->repetitionEntries, 0, sizeof(RepetitionTable_Entry) * MOVESIZE);
rt->size=0;
}
void RepetitionTable_add(RepetitionTable *rt, Position position) {
if (rt->size < MOVESIZE) {
for (unsigned i = rt->size - 1u; i != (unsigned)-1; --i) {
if (rt->repetitionEntries[i].position == position) {
++rt->repetitionEntries[i].count;
return;
}
}
rt->repetitionEntries[rt->size].position = position;
++rt->repetitionEntries[rt->size++].count;
}
else {
rt->repetitionEntries[(rt->size = 0)].position = position;
rt->repetitionEntries[rt->size++].count = 1;
}
}
void RepetitionTable_remove(RepetitionTable* rt) {
rt->repetitionEntries[--rt->size].position = 0;
rt->repetitionEntries[rt->size].count = 0;
}*/