-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathNLS-MB_optical_rogue_wave.py
445 lines (394 loc) · 13.1 KB
/
NLS-MB_optical_rogue_wave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from os import path as osp
import hydra
import numpy as np
from matplotlib import pyplot as plt
from omegaconf import DictConfig
import ppsci
from ppsci.utils import logger
def analytic_solution(out):
I = 1j
t = out["t"]
x = out["x"]
EExact = (
(-1565 * x**2 + (648 * I + 76 * t) * x - 68 * t**2 + 51)
* np.exp(-I / 8 * (-12 * t + 65 * x))
/ (1565 * x**2 - 76 * x * t + 68 * t**2 + 17)
)
pExact = (
(
9796900 * I * x**4
+ (4056480 - 951520 * I * t) * x**3
+ (-579432 * I + 874464 * I * t**2 - 196992 * t) * x**2
+ (-36448 - 41344 * I * t**3 + 176256 * t**2 - 50592 * I * t) * x
+ 884 * I
+ 18496 * I * t**4
+ 8160 * I * t**2
- 4352 * t
)
* np.exp(-I / 8 * (-12 * t + 65 * x))
/ (1565 * x**2 - 76 * x * t + 68 * t**2 + 17) ** 2
)
etaExact = (
4624 * t**4
- 10336 * t**3 * x
+ (218616 * x**2 + 6664) * t**2
+ (-237880 * x**3 + 158440 * x) * t
+ 2449225 * x**4
- 136934 * x**2
- 799
) / (1565 * x**2 - 76 * x * t + 68 * t**2 + 17) ** 2
return (
np.real(EExact),
np.imag(EExact),
np.real(pExact),
np.imag(pExact),
etaExact,
)
def plot(
t: np.ndarray,
x: np.ndarray,
E_ref: np.ndarray,
E_pred: np.ndarray,
p_ref: np.ndarray,
p_pred: np.ndarray,
eta_ref: np.ndarray,
eta_pred: np.ndarray,
output_dir: str,
):
fig = plt.figure(figsize=(10, 10))
plt.subplot(3, 3, 1)
plt.title("E_ref")
plt.tricontourf(x, t, E_ref, levels=256, cmap="jet")
plt.subplot(3, 3, 2)
plt.title("E_pred")
plt.tricontourf(x, t, E_pred, levels=256, cmap="jet")
plt.subplot(3, 3, 3)
plt.title("E_diff")
plt.tricontourf(x, t, np.abs(E_ref - E_pred), levels=256, cmap="jet")
plt.subplot(3, 3, 4)
plt.title("p_ref")
plt.tricontourf(x, t, p_ref, levels=256, cmap="jet")
plt.subplot(3, 3, 5)
plt.title("p_pred")
plt.tricontourf(x, t, p_pred, levels=256, cmap="jet")
plt.subplot(3, 3, 6)
plt.title("p_diff")
plt.tricontourf(x, t, np.abs(p_ref - p_pred), levels=256, cmap="jet")
plt.subplot(3, 3, 7)
plt.title("eta_ref")
plt.tricontourf(x, t, eta_ref, levels=256, cmap="jet")
plt.subplot(3, 3, 8)
plt.title("eta_pred")
plt.tricontourf(x, t, eta_pred, levels=256, cmap="jet")
plt.subplot(3, 3, 9)
plt.title("eta_diff")
plt.tricontourf(x, t, np.abs(eta_ref - eta_pred), levels=256, cmap="jet")
fig_path = osp.join(output_dir, "pred_optical_rogue_wave.png")
print(f"Saving figure to {fig_path}")
fig.savefig(fig_path, bbox_inches="tight", dpi=400)
plt.close()
def train(cfg: DictConfig):
# set model
model = ppsci.arch.MLP(**cfg.MODEL)
# set equation
equation = {
"NLS-MB": ppsci.equation.NLSMB(alpha_1=0.5, alpha_2=-1, omega_0=0.5, time=True)
}
# set geometry
x_lower = -0.5
x_upper = 0.5
t_lower = -2.5
t_upper = 2.5
# set timestamps(including initial t0)
timestamps = np.linspace(t_lower, t_upper, cfg.NTIME_ALL, endpoint=True)
# set time-geometry
geom = {
"time_interval": ppsci.geometry.TimeXGeometry(
ppsci.geometry.TimeDomain(t_lower, t_upper, timestamps=timestamps),
ppsci.geometry.Interval(x_lower, x_upper),
)
}
X, T = np.meshgrid(
np.linspace(x_lower, x_upper, 256), np.linspace(t_lower, t_upper, 256)
)
X_star = np.hstack((X.flatten()[:, None], T.flatten()[:, None]))
# Boundary and Initial conditions
ic = X_star[:, 1] == t_lower
idx_ic = np.random.choice(np.where(ic)[0], 200, replace=False)
lb = X_star[:, 0] == x_lower
idx_lb = np.random.choice(np.where(lb)[0], 200, replace=False)
ub = X_star[:, 0] == x_upper
idx_ub = np.random.choice(np.where(ub)[0], 200, replace=False)
icbc_idx = np.hstack((idx_lb, idx_ic, idx_ub))
X_u_train = X_star[icbc_idx].astype("float32")
X_u_train = {"t": X_u_train[:, 1:2], "x": X_u_train[:, 0:1]}
Eu_train, Ev_train, pu_train, pv_train, eta_train = analytic_solution(X_u_train)
train_dataloader_cfg = {
"dataset": {
"name": "NamedArrayDataset",
"input": {"t": X_u_train["t"], "x": X_u_train["x"]},
"label": {
"Eu": Eu_train,
"Ev": Ev_train,
"pu": pu_train,
"pv": pv_train,
"eta": eta_train,
},
},
"batch_size": 600,
"iters_per_epoch": cfg.TRAIN.iters_per_epoch,
}
# set constraint
pde_constraint = ppsci.constraint.InteriorConstraint(
equation["NLS-MB"].equations,
{
"Schrodinger_1": 0,
"Schrodinger_2": 0,
"Maxwell_1": 0,
"Maxwell_2": 0,
"Bloch": 0,
},
geom["time_interval"],
{
"dataset": {"name": "IterableNamedArrayDataset"},
"batch_size": 20000,
"iters_per_epoch": cfg.TRAIN.iters_per_epoch,
},
ppsci.loss.MSELoss(),
evenly=True,
name="EQ",
)
# supervised constraint s.t ||u-u_0||
sup_constraint = ppsci.constraint.SupervisedConstraint(
train_dataloader_cfg,
ppsci.loss.MSELoss("mean"),
name="Sup",
)
# wrap constraints together
constraint = {
pde_constraint.name: pde_constraint,
sup_constraint.name: sup_constraint,
}
# set optimizer
optimizer = ppsci.optimizer.Adam(learning_rate=cfg.TRAIN.learning_rate)(model)
# set validator
residual_validator = ppsci.validate.GeometryValidator(
equation["NLS-MB"].equations,
{
"Schrodinger_1": 0,
"Schrodinger_2": 0,
"Maxwell_1": 0,
"Maxwell_2": 0,
"Bloch": 0,
},
geom["time_interval"],
{
"dataset": "IterableNamedArrayDataset",
"total_size": 20600,
},
ppsci.loss.MSELoss(),
evenly=True,
metric={"MSE": ppsci.metric.MSE()},
with_initial=True,
name="Residual",
)
validator = {residual_validator.name: residual_validator}
# initialize solver
solver = ppsci.solver.Solver(
model,
constraint,
optimizer=optimizer,
equation=equation,
validator=validator,
cfg=cfg,
)
# train model
solver.train()
# evaluate after finished training
solver.eval()
# fine-tuning pretrained model with L-BFGS
OUTPUT_DIR = cfg.TRAIN.lbfgs.output_dir
logger.init_logger("ppsci", osp.join(OUTPUT_DIR, f"{cfg.mode}.log"), "info")
EPOCHS = cfg.TRAIN.epochs // 10
optimizer_lbfgs = ppsci.optimizer.LBFGS(
cfg.TRAIN.lbfgs.learning_rate, cfg.TRAIN.lbfgs.max_iter
)(model)
solver = ppsci.solver.Solver(
model,
constraint,
OUTPUT_DIR,
optimizer=optimizer_lbfgs,
epochs=EPOCHS,
iters_per_epoch=cfg.TRAIN.lbfgs.iters_per_epoch,
eval_during_train=cfg.TRAIN.lbfgs.eval_during_train,
eval_freq=cfg.TRAIN.lbfgs.eval_freq,
equation=equation,
validator=validator,
)
# train model
solver.train()
# evaluate after finished training
solver.eval()
# visualize prediction
vis_points = geom["time_interval"].sample_interior(20000, evenly=True)
Eu_true, Ev_true, pu_true, pv_true, eta_true = analytic_solution(vis_points)
pred = solver.predict(vis_points, return_numpy=True)
t = vis_points["t"][:, 0]
x = vis_points["x"][:, 0]
E_ref = np.sqrt(Eu_true**2 + Ev_true**2)[:, 0]
E_pred = np.sqrt(pred["Eu"] ** 2 + pred["Ev"] ** 2)[:, 0]
p_ref = np.sqrt(pu_true**2 + pv_true**2)[:, 0]
p_pred = np.sqrt(pred["pu"] ** 2 + pred["pv"] ** 2)[:, 0]
eta_ref = eta_true[:, 0]
eta_pred = pred["eta"][:, 0]
# plot
plot(t, x, E_ref, E_pred, p_ref, p_pred, eta_ref, eta_pred, cfg.output_dir)
def evaluate(cfg: DictConfig):
# set model
model = ppsci.arch.MLP(**cfg.MODEL)
# set equation
equation = {
"NLS-MB": ppsci.equation.NLSMB(alpha_1=0.5, alpha_2=-1, omega_0=0.5, time=True)
}
# set geometry
x_lower = -0.5
x_upper = 0.5
t_lower = -2.5
t_upper = 2.5
# set timestamps(including initial t0)
timestamps = np.linspace(t_lower, t_upper, cfg.NTIME_ALL, endpoint=True)
# set time-geometry
geom = {
"time_interval": ppsci.geometry.TimeXGeometry(
ppsci.geometry.TimeDomain(t_lower, t_upper, timestamps=timestamps),
ppsci.geometry.Interval(x_lower, x_upper),
)
}
# set validator
residual_validator = ppsci.validate.GeometryValidator(
equation["NLS-MB"].equations,
{
"Schrodinger_1": 0,
"Schrodinger_2": 0,
"Maxwell_1": 0,
"Maxwell_2": 0,
"Bloch": 0,
},
geom["time_interval"],
{
"dataset": "IterableNamedArrayDataset",
"total_size": 20600,
},
ppsci.loss.MSELoss(),
evenly=True,
metric={"MSE": ppsci.metric.MSE()},
with_initial=True,
name="Residual",
)
validator = {residual_validator.name: residual_validator}
# initialize solver
solver = ppsci.solver.Solver(
model,
equation=equation,
validator=validator,
cfg=cfg,
)
solver.eval()
# visualize prediction
vis_points = geom["time_interval"].sample_interior(20000, evenly=True)
Eu_true, Ev_true, pu_true, pv_true, eta_true = analytic_solution(vis_points)
pred = solver.predict(vis_points, return_numpy=True)
t = vis_points["t"][:, 0]
x = vis_points["x"][:, 0]
E_ref = np.sqrt(Eu_true**2 + Ev_true**2)[:, 0]
E_pred = np.sqrt(pred["Eu"] ** 2 + pred["Ev"] ** 2)[:, 0]
p_ref = np.sqrt(pu_true**2 + pv_true**2)[:, 0]
p_pred = np.sqrt(pred["pu"] ** 2 + pred["pv"] ** 2)[:, 0]
eta_ref = eta_true[:, 0]
eta_pred = pred["eta"][:, 0]
# plot
plot(t, x, E_ref, E_pred, p_ref, p_pred, eta_ref, eta_pred, cfg.output_dir)
def export(cfg: DictConfig):
# set model
model = ppsci.arch.MLP(**cfg.MODEL)
# initialize solver
solver = ppsci.solver.Solver(
model,
cfg=cfg,
)
# export model
from paddle.static import InputSpec
input_spec = [
{key: InputSpec([None, 1], "float32", name=key) for key in model.input_keys},
]
solver.export(input_spec, cfg.INFER.export_path)
def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor
predictor = pinn_predictor.PINNPredictor(cfg)
# set geometry
x_lower = -0.5
x_upper = 0.5
t_lower = -2.5
t_upper = 2.5
# set timestamps(including initial t0)
timestamps = np.linspace(t_lower, t_upper, cfg.NTIME_ALL, endpoint=True)
# set time-geometry
geom = {
"time_interval": ppsci.geometry.TimeXGeometry(
ppsci.geometry.TimeDomain(t_lower, t_upper, timestamps=timestamps),
ppsci.geometry.Interval(x_lower, x_upper),
)
}
NPOINT_TOTAL = cfg.NPOINT_INTERIOR + cfg.NPOINT_BC
input_dict = geom["time_interval"].sample_interior(NPOINT_TOTAL, evenly=True)
output_dict = predictor.predict(
{key: input_dict[key] for key in cfg.MODEL.input_keys}, cfg.INFER.batch_size
)
# mapping data to cfg.INFER.output_keys
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(cfg.MODEL.output_keys, output_dict.keys())
}
# visualize prediction
Eu_true, Ev_true, pu_true, pv_true, eta_true = analytic_solution(input_dict)
t = input_dict["t"][:, 0]
x = input_dict["x"][:, 0]
E_ref = np.sqrt(Eu_true**2 + Ev_true**2)[:, 0]
E_pred = np.sqrt(output_dict["Eu"] ** 2 + output_dict["Ev"] ** 2)[:, 0]
p_ref = np.sqrt(pu_true**2 + pv_true**2)[:, 0]
p_pred = np.sqrt(output_dict["pu"] ** 2 + output_dict["pv"] ** 2)[:, 0]
eta_ref = eta_true[:, 0]
eta_pred = output_dict["eta"][:, 0]
# plot
plot(t, x, E_ref, E_pred, p_ref, p_pred, eta_ref, eta_pred, cfg.output_dir)
@hydra.main(
version_base=None, config_path="./conf", config_name="NLS-MB_rogue_wave.yaml"
)
def main(cfg: DictConfig):
if cfg.mode == "train":
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)
if __name__ == "__main__":
main()