-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistances.cpp
177 lines (136 loc) · 5.49 KB
/
distances.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include "distances.h"
double **mem_distance;
void find_closest_point(vector<double> &closest_point, const vector<double> &curr_point, const vector<double> &lower_left_point, double delta) {
int dim = curr_point.size();
for (int i = 0; i < dim; ++i) {
double val = curr_point[i] - lower_left_point[i] * delta;
closest_point.push_back(lower_left_point[i]);
if (val > delta / 2) {
++closest_point.back();
}
}
}
double euclidean_distance_square(const vector<double> &pnt_1, const vector<double> &pnt_2) {
double dist = 0;
for (int i = 0; i < (int)pnt_1.size(); ++i) {
dist += (pnt_1[i] - pnt_2[i]) * (pnt_1[i] - pnt_2[i]);
}
return dist;
}
vector<double> mean_point(const vector<double> &pnt_1, const vector<double> &pnt_2) {
vector<double> mean;
for (int i = 0; i < (int)pnt_1.size(); ++i) {
double val = (pnt_1[i] + pnt_2[i]) / 2.0;
mean.push_back(val);
}
return mean;
}
double discrete_frechet_distance(const Curve &curve_1, const Curve &curve_2, Curve &mean_traversal, bool path) {
int N1 = curve_1.get_length();
int N2 = curve_2.get_length();
double **dp_solve = new double*[N1];
double result, dist;
for (int i = 0; i < N1; ++i) {
dp_solve[i] = new double[N2];
}
dist = euclidean_distance_square(curve_1.get_point(0), curve_2.get_point(0));
dp_solve[0][0] = dist;
for (int i = 1; i < N1; ++i) {
dist = euclidean_distance_square(curve_1.get_point(i), curve_2.get_point(0));
dp_solve[i][0] = max(dp_solve[i - 1][0], dist);
}
for (int i = 1; i < N2; ++i) {
dist = euclidean_distance_square(curve_1.get_point(0), curve_2.get_point(i));
dp_solve[0][i] = max(dp_solve[0][i - 1], dist);
}
for (int i = 1; i < N1; ++i) {
for (int j = 1; j < N2; ++j) {
dist = euclidean_distance_square(curve_1.get_point(i), curve_2.get_point(j));
double val = min(min(dp_solve[i - 1][j], dp_solve[i][j - 1]), dp_solve[i - 1][j - 1]);
dp_solve[i][j] = max(val, dist);
}
}
result = sqrt(dp_solve[N1 - 1][N2 - 1]);
if (path) {
int p1 = N1 - 1, p2 = N2 - 1;
Curve reverse_mean_traversal;
vector<double> mean;
mean = mean_point(curve_1.get_point(p1), curve_2.get_point(p2));
reverse_mean_traversal.insert_point(mean);
while (p1 || p2) {
if (!p2 || (p1 && dp_solve[p1 - 1][p2] < min(dp_solve[p1][p2 - 1], dp_solve[p1 - 1][p2 - 1]))) {
mean = mean_point(curve_1.get_point(--p1), curve_2.get_point(p2));
} else if (!p1 || (p2 && dp_solve[p1][p2 - 1] < dp_solve[p1 - 1][p2 - 1])) {
mean = mean_point(curve_1.get_point(p1), curve_2.get_point(--p2));
} else {
mean = mean_point(curve_1.get_point(--p1), curve_2.get_point(--p2));
}
reverse_mean_traversal.insert_point(mean);
}
if (p1 || p2) {
mean = mean_point(curve_1.get_point(0), curve_2.get_point(0));
reverse_mean_traversal.insert_point(mean);
}
for (int i = (int)reverse_mean_traversal.get_length() - 1; i >= 0; --i) {
mean_traversal.insert_point(reverse_mean_traversal.get_point(i));
}
}
for (int i = 0; i < N1; ++i) {
delete[] dp_solve[i];
}
delete[] dp_solve;
return result;
}
double dynamic_time_wrapping(const Curve &curve_1, const Curve &curve_2) {
int N1 = curve_1.get_length();
int N2 = curve_2.get_length();
double **dp_solve = new double*[N1];
double result, dist;
for (int i = 0; i < N1; ++i) {
dp_solve[i] = new double[N2];
}
dist = euclidean_distance_square(curve_1.get_point(0), curve_2.get_point(0));
dp_solve[0][0] = dist;
for (int i = 1; i < N1; ++i) {
dist = euclidean_distance_square(curve_1.get_point(i), curve_2.get_point(0));
dp_solve[i][0] = dp_solve[i - 1][0] + dist;
}
for (int i = 1; i < N2; ++i) {
dist = euclidean_distance_square(curve_1.get_point(0), curve_2.get_point(i));
dp_solve[0][i] = dp_solve[0][i - 1] + dist;
}
for (int i = 1; i < N1; ++i) {
for (int j = 1; j < N2; ++j) {
dist = euclidean_distance_square(curve_1.get_point(i), curve_2.get_point(j));
double val = min(min(dp_solve[i - 1][j], dp_solve[i][j - 1]), dp_solve[i - 1][j - 1]);
dp_solve[i][j] = dist + val;
}
}
result = sqrt(dp_solve[N1 - 1][N2 - 1]);
for (int i = 0; i < N1; ++i) {
delete[] dp_solve[i];
}
delete[] dp_solve;
return result;
}
double compute_distance(const Curve &curve_1, const Curve &curve_2, const char *dist_function) {
if (curve_1.get_int_id() != -1 && curve_2.get_int_id() != -1) {
if (mem_distance[curve_1.get_int_id()][curve_2.get_int_id()] != -1) {
return mem_distance[curve_1.get_int_id()][curve_2.get_int_id()];
}
}
double dist;
if (!strcmp(dist_function, "DFT")) {
dist = discrete_frechet_distance(curve_1, curve_2);
} else if (!strcmp(dist_function, "DTW")) {
dist = dynamic_time_wrapping(curve_1, curve_2);
}
if (curve_1.get_int_id() != -1 && curve_2.get_int_id() != -1) {
mem_distance[curve_1.get_int_id()][curve_2.get_int_id()] = dist;
}
return dist;
}