-
-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathutils.py
2263 lines (1854 loc) · 69.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import json
import time
import uuid
from enum import Enum
from typing import Any, Dict, List, Literal, Mapping, Optional, Tuple, Union
from aiohttp import FormData
from openai._models import BaseModel as OpenAIObject
from openai.types.audio.transcription_create_params import FileTypes # type: ignore
from openai.types.chat.chat_completion import ChatCompletion
from openai.types.completion_usage import (
CompletionTokensDetails,
CompletionUsage,
PromptTokensDetails,
)
from openai.types.moderation import (
Categories,
CategoryAppliedInputTypes,
CategoryScores,
)
from openai.types.moderation_create_response import Moderation, ModerationCreateResponse
from pydantic import BaseModel, ConfigDict, Field, PrivateAttr, model_validator
from typing_extensions import Callable, Dict, Required, TypedDict, override
import litellm
from ..litellm_core_utils.core_helpers import map_finish_reason
from .guardrails import GuardrailEventHooks
from .llms.openai import (
Batch,
ChatCompletionAnnotation,
ChatCompletionRedactedThinkingBlock,
ChatCompletionThinkingBlock,
ChatCompletionToolCallChunk,
ChatCompletionUsageBlock,
FileSearchTool,
OpenAIChatCompletionChunk,
OpenAIFileObject,
OpenAIRealtimeStreamList,
WebSearchOptions,
)
from .rerank import RerankResponse
def _generate_id(): # private helper function
return "chatcmpl-" + str(uuid.uuid4())
class LiteLLMPydanticObjectBase(BaseModel):
"""
Implements default functions, all pydantic objects should have.
"""
def json(self, **kwargs): # type: ignore
try:
return self.model_dump(**kwargs) # noqa
except Exception:
# if using pydantic v1
return self.dict(**kwargs)
def fields_set(self):
try:
return self.model_fields_set # noqa
except Exception:
# if using pydantic v1
return self.__fields_set__
model_config = ConfigDict(protected_namespaces=())
class LiteLLMCommonStrings(Enum):
redacted_by_litellm = "redacted by litellm. 'litellm.turn_off_message_logging=True'"
llm_provider_not_provided = "Unmapped LLM provider for this endpoint. You passed model={model}, custom_llm_provider={custom_llm_provider}. Check supported provider and route: https://docs.litellm.ai/docs/providers"
SupportedCacheControls = ["ttl", "s-maxage", "no-cache", "no-store"]
class CostPerToken(TypedDict):
input_cost_per_token: float
output_cost_per_token: float
class ProviderField(TypedDict):
field_name: str
field_type: Literal["string"]
field_description: str
field_value: str
class ProviderSpecificModelInfo(TypedDict, total=False):
supports_system_messages: Optional[bool]
supports_response_schema: Optional[bool]
supports_vision: Optional[bool]
supports_function_calling: Optional[bool]
supports_tool_choice: Optional[bool]
supports_assistant_prefill: Optional[bool]
supports_prompt_caching: Optional[bool]
supports_audio_input: Optional[bool]
supports_embedding_image_input: Optional[bool]
supports_audio_output: Optional[bool]
supports_pdf_input: Optional[bool]
supports_native_streaming: Optional[bool]
supports_parallel_function_calling: Optional[bool]
supports_web_search: Optional[bool]
supports_reasoning: Optional[bool]
class SearchContextCostPerQuery(TypedDict, total=False):
search_context_size_low: float
search_context_size_medium: float
search_context_size_high: float
class ModelInfoBase(ProviderSpecificModelInfo, total=False):
key: Required[str] # the key in litellm.model_cost which is returned
max_tokens: Required[Optional[int]]
max_input_tokens: Required[Optional[int]]
max_output_tokens: Required[Optional[int]]
input_cost_per_token: Required[float]
cache_creation_input_token_cost: Optional[float]
cache_read_input_token_cost: Optional[float]
input_cost_per_character: Optional[float] # only for vertex ai models
input_cost_per_audio_token: Optional[float]
input_cost_per_token_above_128k_tokens: Optional[float] # only for vertex ai models
input_cost_per_token_above_200k_tokens: Optional[
float
] # only for vertex ai gemini-2.5-pro models
input_cost_per_character_above_128k_tokens: Optional[
float
] # only for vertex ai models
input_cost_per_query: Optional[float] # only for rerank models
input_cost_per_image: Optional[float] # only for vertex ai models
input_cost_per_audio_per_second: Optional[float] # only for vertex ai models
input_cost_per_video_per_second: Optional[float] # only for vertex ai models
input_cost_per_second: Optional[float] # for OpenAI Speech models
input_cost_per_token_batches: Optional[float]
output_cost_per_token_batches: Optional[float]
output_cost_per_token: Required[float]
output_cost_per_token_thinking: Optional[
float
] # only for vertex ai gemini-2.5-flash models
output_cost_per_character: Optional[float] # only for vertex ai models
output_cost_per_audio_token: Optional[float]
output_cost_per_token_above_128k_tokens: Optional[
float
] # only for vertex ai models
output_cost_per_token_above_200k_tokens: Optional[
float
] # only for vertex ai gemini-2.5-pro models
output_cost_per_character_above_128k_tokens: Optional[
float
] # only for vertex ai models
output_cost_per_image: Optional[float]
output_vector_size: Optional[int]
output_cost_per_reasoning_token: Optional[float]
output_cost_per_video_per_second: Optional[float] # only for vertex ai models
output_cost_per_audio_per_second: Optional[float] # only for vertex ai models
output_cost_per_second: Optional[float] # for OpenAI Speech models
search_context_cost_per_query: Optional[
SearchContextCostPerQuery
] # Cost for using web search tool
litellm_provider: Required[str]
mode: Required[
Literal[
"completion", "embedding", "image_generation", "chat", "audio_transcription"
]
]
tpm: Optional[int]
rpm: Optional[int]
class ModelInfo(ModelInfoBase, total=False):
"""
Model info for a given model, this is information found in litellm.model_prices_and_context_window.json
"""
supported_openai_params: Required[Optional[List[str]]]
class GenericStreamingChunk(TypedDict, total=False):
text: Required[str]
tool_use: Optional[ChatCompletionToolCallChunk]
is_finished: Required[bool]
finish_reason: Required[str]
usage: Required[Optional[ChatCompletionUsageBlock]]
index: int
# use this dict if you want to return any provider specific fields in the response
provider_specific_fields: Optional[Dict[str, Any]]
from enum import Enum
class CallTypes(Enum):
embedding = "embedding"
aembedding = "aembedding"
completion = "completion"
acompletion = "acompletion"
atext_completion = "atext_completion"
text_completion = "text_completion"
image_generation = "image_generation"
aimage_generation = "aimage_generation"
moderation = "moderation"
amoderation = "amoderation"
atranscription = "atranscription"
transcription = "transcription"
aspeech = "aspeech"
speech = "speech"
rerank = "rerank"
arerank = "arerank"
arealtime = "_arealtime"
create_batch = "create_batch"
acreate_batch = "acreate_batch"
aretrieve_batch = "aretrieve_batch"
retrieve_batch = "retrieve_batch"
pass_through = "pass_through_endpoint"
anthropic_messages = "anthropic_messages"
get_assistants = "get_assistants"
aget_assistants = "aget_assistants"
create_assistants = "create_assistants"
acreate_assistants = "acreate_assistants"
delete_assistant = "delete_assistant"
adelete_assistant = "adelete_assistant"
acreate_thread = "acreate_thread"
create_thread = "create_thread"
aget_thread = "aget_thread"
get_thread = "get_thread"
a_add_message = "a_add_message"
add_message = "add_message"
aget_messages = "aget_messages"
get_messages = "get_messages"
arun_thread = "arun_thread"
run_thread = "run_thread"
arun_thread_stream = "arun_thread_stream"
run_thread_stream = "run_thread_stream"
afile_retrieve = "afile_retrieve"
file_retrieve = "file_retrieve"
afile_delete = "afile_delete"
file_delete = "file_delete"
afile_list = "afile_list"
file_list = "file_list"
acreate_file = "acreate_file"
create_file = "create_file"
afile_content = "afile_content"
file_content = "file_content"
create_fine_tuning_job = "create_fine_tuning_job"
acreate_fine_tuning_job = "acreate_fine_tuning_job"
acancel_fine_tuning_job = "acancel_fine_tuning_job"
cancel_fine_tuning_job = "cancel_fine_tuning_job"
alist_fine_tuning_jobs = "alist_fine_tuning_jobs"
list_fine_tuning_jobs = "list_fine_tuning_jobs"
aretrieve_fine_tuning_job = "aretrieve_fine_tuning_job"
retrieve_fine_tuning_job = "retrieve_fine_tuning_job"
responses = "responses"
aresponses = "aresponses"
CallTypesLiteral = Literal[
"embedding",
"aembedding",
"completion",
"acompletion",
"atext_completion",
"text_completion",
"image_generation",
"aimage_generation",
"moderation",
"amoderation",
"atranscription",
"transcription",
"aspeech",
"speech",
"rerank",
"arerank",
"_arealtime",
"create_batch",
"acreate_batch",
"pass_through_endpoint",
"anthropic_messages",
"aretrieve_batch",
"retrieve_batch",
]
class PassthroughCallTypes(Enum):
passthrough_image_generation = "passthrough-image-generation"
class TopLogprob(OpenAIObject):
token: str
"""The token."""
bytes: Optional[List[int]] = None
"""A list of integers representing the UTF-8 bytes representation of the token.
Useful in instances where characters are represented by multiple tokens and
their byte representations must be combined to generate the correct text
representation. Can be `null` if there is no bytes representation for the token.
"""
logprob: float
"""The log probability of this token, if it is within the top 20 most likely
tokens.
Otherwise, the value `-9999.0` is used to signify that the token is very
unlikely.
"""
class ChatCompletionTokenLogprob(OpenAIObject):
token: str
"""The token."""
bytes: Optional[List[int]] = None
"""A list of integers representing the UTF-8 bytes representation of the token.
Useful in instances where characters are represented by multiple tokens and
their byte representations must be combined to generate the correct text
representation. Can be `null` if there is no bytes representation for the token.
"""
logprob: float
"""The log probability of this token, if it is within the top 20 most likely
tokens.
Otherwise, the value `-9999.0` is used to signify that the token is very
unlikely.
"""
top_logprobs: List[TopLogprob]
"""List of the most likely tokens and their log probability, at this token
position.
In rare cases, there may be fewer than the number of requested `top_logprobs`
returned.
"""
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
class ChoiceLogprobs(OpenAIObject):
content: Optional[List[ChatCompletionTokenLogprob]] = None
"""A list of message content tokens with log probability information."""
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
class FunctionCall(OpenAIObject):
arguments: str
name: Optional[str] = None
class Function(OpenAIObject):
arguments: str
name: Optional[
str
] # can be None - openai e.g.: ChoiceDeltaToolCallFunction(arguments='{"', name=None), type=None)
def __init__(
self,
arguments: Optional[Union[Dict, str]] = None,
name: Optional[str] = None,
**params,
):
if arguments is None:
if params.get("parameters", None) is not None and isinstance(
params["parameters"], dict
):
arguments = json.dumps(params["parameters"])
params.pop("parameters")
else:
arguments = ""
elif isinstance(arguments, Dict):
arguments = json.dumps(arguments)
else:
arguments = arguments
name = name
# Build a dictionary with the structure your BaseModel expects
data = {"arguments": arguments, "name": name}
super(Function, self).__init__(**data)
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
class ChatCompletionDeltaToolCall(OpenAIObject):
id: Optional[str] = None
function: Function
type: Optional[str] = None
index: int
class HiddenParams(OpenAIObject):
original_response: Optional[Union[str, Any]] = None
model_id: Optional[str] = None # used in Router for individual deployments
api_base: Optional[str] = None # returns api base used for making completion call
model_config = ConfigDict(extra="allow", protected_namespaces=())
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
def json(self, **kwargs): # type: ignore
try:
return self.model_dump() # noqa
except Exception:
# if using pydantic v1
return self.dict()
class ChatCompletionMessageToolCall(OpenAIObject):
def __init__(
self,
function: Union[Dict, Function],
id: Optional[str] = None,
type: Optional[str] = None,
**params,
):
super(ChatCompletionMessageToolCall, self).__init__(**params)
if isinstance(function, Dict):
self.function = Function(**function)
else:
self.function = function
if id is not None:
self.id = id
else:
self.id = f"{uuid.uuid4()}"
if type is not None:
self.type = type
else:
self.type = "function"
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
from openai.types.chat.chat_completion_audio import ChatCompletionAudio
class ChatCompletionAudioResponse(ChatCompletionAudio):
def __init__(
self,
data: str,
expires_at: int,
transcript: str,
id: Optional[str] = None,
**params,
):
if id is not None:
id = id
else:
id = f"{uuid.uuid4()}"
super(ChatCompletionAudioResponse, self).__init__(
data=data, expires_at=expires_at, transcript=transcript, id=id, **params
)
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
"""
Reference:
ChatCompletionMessage(content='This is a test', role='assistant', function_call=None, tool_calls=None))
"""
def add_provider_specific_fields(
object: BaseModel, provider_specific_fields: Optional[Dict[str, Any]]
):
if not provider_specific_fields: # set if provider_specific_fields is not empty
return
setattr(object, "provider_specific_fields", provider_specific_fields)
class Message(OpenAIObject):
content: Optional[str]
role: Literal["assistant", "user", "system", "tool", "function"]
tool_calls: Optional[List[ChatCompletionMessageToolCall]]
function_call: Optional[FunctionCall]
audio: Optional[ChatCompletionAudioResponse] = None
reasoning_content: Optional[str] = None
thinking_blocks: Optional[
List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]]
] = None
provider_specific_fields: Optional[Dict[str, Any]] = Field(
default=None, exclude=True
)
annotations: Optional[List[ChatCompletionAnnotation]] = None
def __init__(
self,
content: Optional[str] = None,
role: Literal["assistant"] = "assistant",
function_call=None,
tool_calls: Optional[list] = None,
audio: Optional[ChatCompletionAudioResponse] = None,
provider_specific_fields: Optional[Dict[str, Any]] = None,
reasoning_content: Optional[str] = None,
thinking_blocks: Optional[
List[
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
]
] = None,
annotations: Optional[List[ChatCompletionAnnotation]] = None,
**params,
):
init_values: Dict[str, Any] = {
"content": content,
"role": role or "assistant", # handle null input
"function_call": (
FunctionCall(**function_call) if function_call is not None else None
),
"tool_calls": (
[
(
ChatCompletionMessageToolCall(**tool_call)
if isinstance(tool_call, dict)
else tool_call
)
for tool_call in tool_calls
]
if tool_calls is not None and len(tool_calls) > 0
else None
),
}
if audio is not None:
init_values["audio"] = audio
if thinking_blocks is not None:
init_values["thinking_blocks"] = thinking_blocks
if annotations is not None:
init_values["annotations"] = annotations
if reasoning_content is not None:
init_values["reasoning_content"] = reasoning_content
super(Message, self).__init__(
**init_values, # type: ignore
**params,
)
if audio is None:
# delete audio from self
# OpenAI compatible APIs like mistral API will raise an error if audio is passed in
del self.audio
if annotations is None:
# ensure default response matches OpenAI spec
# Some OpenAI compatible APIs raise an error if annotations are passed in
del self.annotations
if reasoning_content is None:
# ensure default response matches OpenAI spec
del self.reasoning_content
if thinking_blocks is None:
# ensure default response matches OpenAI spec
del self.thinking_blocks
add_provider_specific_fields(self, provider_specific_fields)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
def json(self, **kwargs): # type: ignore
try:
return self.model_dump() # noqa
except Exception:
# if using pydantic v1
return self.dict()
class Delta(OpenAIObject):
reasoning_content: Optional[str] = None
thinking_blocks: Optional[
List[Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]]
] = None
provider_specific_fields: Optional[Dict[str, Any]] = Field(default=None)
def __init__(
self,
content=None,
role=None,
function_call=None,
tool_calls=None,
audio: Optional[ChatCompletionAudioResponse] = None,
reasoning_content: Optional[str] = None,
thinking_blocks: Optional[
List[
Union[ChatCompletionThinkingBlock, ChatCompletionRedactedThinkingBlock]
]
] = None,
annotations: Optional[List[ChatCompletionAnnotation]] = None,
**params,
):
super(Delta, self).__init__(**params)
add_provider_specific_fields(self, params.get("provider_specific_fields", {}))
self.content = content
self.role = role
# Set default values and correct types
self.function_call: Optional[Union[FunctionCall, Any]] = None
self.tool_calls: Optional[List[Union[ChatCompletionDeltaToolCall, Any]]] = None
self.audio: Optional[ChatCompletionAudioResponse] = None
self.annotations: Optional[List[ChatCompletionAnnotation]] = None
if reasoning_content is not None:
self.reasoning_content = reasoning_content
else:
# ensure default response matches OpenAI spec
del self.reasoning_content
if thinking_blocks is not None:
self.thinking_blocks = thinking_blocks
else:
# ensure default response matches OpenAI spec
del self.thinking_blocks
# Add annotations to the delta, ensure they are only on Delta if they exist (Match OpenAI spec)
if annotations is not None:
self.annotations = annotations
else:
del self.annotations
if function_call is not None and isinstance(function_call, dict):
self.function_call = FunctionCall(**function_call)
else:
self.function_call = function_call
if tool_calls is not None and isinstance(tool_calls, list):
self.tool_calls = []
for tool_call in tool_calls:
if isinstance(tool_call, dict):
if tool_call.get("index", None) is None:
tool_call["index"] = 0
self.tool_calls.append(ChatCompletionDeltaToolCall(**tool_call))
elif isinstance(tool_call, ChatCompletionDeltaToolCall):
self.tool_calls.append(tool_call)
else:
self.tool_calls = tool_calls
self.audio = audio
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
class Choices(OpenAIObject):
def __init__(
self,
finish_reason=None,
index=0,
message: Optional[Union[Message, dict]] = None,
logprobs: Optional[Union[ChoiceLogprobs, dict, Any]] = None,
enhancements=None,
**params,
):
super(Choices, self).__init__(**params)
if finish_reason is not None:
self.finish_reason = map_finish_reason(
finish_reason
) # set finish_reason for all responses
else:
self.finish_reason = "stop"
self.index = index
if message is None:
self.message = Message()
else:
if isinstance(message, Message):
self.message = message
elif isinstance(message, dict):
self.message = Message(**message)
if logprobs is not None:
if isinstance(logprobs, dict):
self.logprobs = ChoiceLogprobs(**logprobs)
else:
self.logprobs = logprobs
if enhancements is not None:
self.enhancements = enhancements
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
class CompletionTokensDetailsWrapper(
CompletionTokensDetails
): # wrapper for older openai versions
text_tokens: Optional[int] = None
"""Text tokens generated by the model."""
class PromptTokensDetailsWrapper(
PromptTokensDetails
): # wrapper for older openai versions
text_tokens: Optional[int] = None
"""Text tokens sent to the model."""
image_tokens: Optional[int] = None
"""Image tokens sent to the model."""
character_count: Optional[int] = None
"""Character count sent to the model. Used for Vertex AI multimodal embeddings."""
image_count: Optional[int] = None
"""Number of images sent to the model. Used for Vertex AI multimodal embeddings."""
video_length_seconds: Optional[float] = None
"""Length of videos sent to the model. Used for Vertex AI multimodal embeddings."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.character_count is None:
del self.character_count
if self.image_count is None:
del self.image_count
if self.video_length_seconds is None:
del self.video_length_seconds
class Usage(CompletionUsage):
_cache_creation_input_tokens: int = PrivateAttr(
0
) # hidden param for prompt caching. Might change, once openai introduces their equivalent.
_cache_read_input_tokens: int = PrivateAttr(
0
) # hidden param for prompt caching. Might change, once openai introduces their equivalent.
def __init__(
self,
prompt_tokens: Optional[int] = None,
completion_tokens: Optional[int] = None,
total_tokens: Optional[int] = None,
reasoning_tokens: Optional[int] = None,
prompt_tokens_details: Optional[Union[PromptTokensDetailsWrapper, dict]] = None,
completion_tokens_details: Optional[
Union[CompletionTokensDetailsWrapper, dict]
] = None,
**params,
):
# handle reasoning_tokens
_completion_tokens_details: Optional[CompletionTokensDetailsWrapper] = None
if reasoning_tokens:
text_tokens = (
completion_tokens - reasoning_tokens if completion_tokens else None
)
completion_tokens_details = CompletionTokensDetailsWrapper(
reasoning_tokens=reasoning_tokens, text_tokens=text_tokens
)
# Ensure completion_tokens_details is properly handled
if completion_tokens_details:
if isinstance(completion_tokens_details, dict):
_completion_tokens_details = CompletionTokensDetailsWrapper(
**completion_tokens_details
)
elif isinstance(completion_tokens_details, CompletionTokensDetails):
_completion_tokens_details = completion_tokens_details
## DEEPSEEK MAPPING ##
if "prompt_cache_hit_tokens" in params and isinstance(
params["prompt_cache_hit_tokens"], int
):
if prompt_tokens_details is None:
prompt_tokens_details = PromptTokensDetailsWrapper(
cached_tokens=params["prompt_cache_hit_tokens"]
)
## ANTHROPIC MAPPING ##
if "cache_read_input_tokens" in params and isinstance(
params["cache_read_input_tokens"], int
):
if prompt_tokens_details is None:
prompt_tokens_details = PromptTokensDetailsWrapper(
cached_tokens=params["cache_read_input_tokens"]
)
# handle prompt_tokens_details
_prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None
if prompt_tokens_details:
if isinstance(prompt_tokens_details, dict):
_prompt_tokens_details = PromptTokensDetailsWrapper(
**prompt_tokens_details
)
elif isinstance(prompt_tokens_details, PromptTokensDetails):
_prompt_tokens_details = prompt_tokens_details
super().__init__(
prompt_tokens=prompt_tokens or 0,
completion_tokens=completion_tokens or 0,
total_tokens=total_tokens or 0,
completion_tokens_details=_completion_tokens_details or None,
prompt_tokens_details=_prompt_tokens_details or None,
)
## ANTHROPIC MAPPING ##
if "cache_creation_input_tokens" in params and isinstance(
params["cache_creation_input_tokens"], int
):
self._cache_creation_input_tokens = params["cache_creation_input_tokens"]
if "cache_read_input_tokens" in params and isinstance(
params["cache_read_input_tokens"], int
):
self._cache_read_input_tokens = params["cache_read_input_tokens"]
## DEEPSEEK MAPPING ##
if "prompt_cache_hit_tokens" in params and isinstance(
params["prompt_cache_hit_tokens"], int
):
self._cache_read_input_tokens = params["prompt_cache_hit_tokens"]
for k, v in params.items():
setattr(self, k, v)
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
class StreamingChoices(OpenAIObject):
def __init__(
self,
finish_reason=None,
index=0,
delta: Optional[Delta] = None,
logprobs=None,
enhancements=None,
**params,
):
# Fix Perplexity return both delta and message cause OpenWebUI repect text
# https://github.com/BerriAI/litellm/issues/8455
params.pop("message", None)
super(StreamingChoices, self).__init__(**params)
if finish_reason:
self.finish_reason = map_finish_reason(finish_reason)
else:
self.finish_reason = None
self.index = index
if delta is not None:
if isinstance(delta, Delta):
self.delta = delta
elif isinstance(delta, dict):
self.delta = Delta(**delta)
else:
self.delta = Delta()
if enhancements is not None:
self.enhancements = enhancements
if logprobs is not None and isinstance(logprobs, dict):
self.logprobs = ChoiceLogprobs(**logprobs)
else:
self.logprobs = logprobs # type: ignore
def __contains__(self, key):
# Define custom behavior for the 'in' operator
return hasattr(self, key)
def get(self, key, default=None):
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
return getattr(self, key, default)
def __getitem__(self, key):
# Allow dictionary-style access to attributes
return getattr(self, key)
def __setitem__(self, key, value):
# Allow dictionary-style assignment of attributes
setattr(self, key, value)
class StreamingChatCompletionChunk(OpenAIChatCompletionChunk):
def __init__(self, **kwargs):
new_choices = []
for choice in kwargs["choices"]:
new_choice = StreamingChoices(**choice).model_dump()
new_choices.append(new_choice)